光学带隙或禁带宽度是半导体材料的一个重要特征参数.本文以几个具有代表性的 InGaN/GaN 多量子阱结构作为研究对象,深入探讨了荧光法测定某个目标温度下 InGaN 阱层的光学带隙所需要满足的测试条件.由于 InGaN 阱层是一种多元合金且受到来自 GaN 垒层的应力作用,所以该阱层中不仅存在着杂质/缺陷相关的非辐射中心,也存在着组分起伏诱发的局域势起伏以及极化场诱发的量子限制斯塔克效应(QCSE).因此,为了获得目标温度下 InGaN 阱层的较为精确的光学带隙,我们提出了荧光测量至少应满足的测试条件,即必须消除该目标温度下非辐射中心、局域中心以及 QCSE 对辐射过程的影响.尽管这些测试条件尚有待于进一步被完善,但期望本测试方法能够为半导体光学带隙测量提供有价值的指导或思路.
关键词:光学带隙,荧光,非辐射复合,局域效应,量子限制斯塔克效应(QCSE)
时凯居; 李睿; 李长富; 王成新; 徐现刚; 冀子武 物理学报 2021-12-17
1 引言
光学带隙或禁带宽度是半导体的一个重要特征参数,它反映了价电子被束缚的强弱程度和光学性能的优劣,也决定了影响其光学性能等所需要的外界条件[1–3].因此,在光学研究中,测定一种新型半导体材料的光学带隙对于了解其结构特性、光学特性和实际用途具有重要的物理意义和现实意义.目前,常用的光学测试方法主要有吸收光谱法(或透射光谱法)[4–6].该方法因其操作过程简单易行,而被相关研究者所广泛采用.然而,在实际应用中上述方法也存在着一些难以克服的缺点:1)对于生长在窄带隙衬底上的外延材料或结构而言,还必须事先进行衬底剥离才能进行上述测量,但这个剥离过程耗时费力,并有可能导致样品的损伤甚至损坏;2)如果外延层是由不同带隙的多层材料组成的复合结构,那么其它层的吸收也会对目标层的测量造成不可忽视的干扰;3)利用公式 αhν = A(hν-Eg) p[4]对实验测得的透射谱的吸收边进行拟合以确定能量带隙时,有时会因为吸收边的不规则而难以完美拟合并因此造成较大的测量误差[5];4)由于上述测量使用的是宽光源,相应波长的输出功率较小,这样也会影响测量精度[6].
荧光(光致发光或电致发光,即 PL 或 EL)测量是研究探讨半导体发光材料或器件的结构特性和光电特性不可或缺的重要手段[7,8].利用荧光法测定半导体材料的带隙宽度,在一定程度上可以克服前述透射光谱法的固有弊端,同时也能够深入地洞悉该材料的结构特性与光学特性的内在关联,揭示载流子的产生、传输和复合发光过程的动力学机制 [9,10].因此荧光法也是测定半导体带隙宽度的一个理想候选方法,并且已经有许多研究将荧光峰位能量默认为禁带宽度并结合维加德定律(Vegard’s law)计算出相关的结构参数[11–14].然而,上述将荧光峰位能量简单地看作是禁带宽度的做法并不十分妥当,这是因为在很多情况下样品结构的不完美会导致峰位能量与禁带宽度之间出现较大的偏差.如我们所知,由于生长工艺的不成熟以及合适衬底的缺乏,致使所获得的半导体材料的结晶质量或结构质量不够完美,如杂质/缺陷相关的非辐射中心的存在[15,16],多元合金中组分起伏相关的局域中心的存在[17,18],以及异质结构中晶格失配所诱发的量子限制斯塔克效应(QCSE)的存在等[19,20].这些因素都会使得辐射能量发生红移并导致测量结果和实际带隙(即本征带隙)之间存在着较大的偏差,即所谓的斯托克斯位移(Stokes shift).因此,如何优化荧光测试条件以减小或避免上述因素的干扰或影响,是获得较为精确测量结果的关键.
光学带隙也是温度的函数.对于本征半导体,它遵从瓦氏尼定律(Varshni law),即依赖温度的禁带收缩效应[21,22].在本研究中,我们采用荧光测量方法,重点探讨了典型目标温度下具有代表性结构特征的半导体带隙测定应满足的测试条件,即常温(300 K)条件下 InGaN/GaN 多量子阱结构中 InGaN 阱层的光学带隙测定应满足的测试条件,以期获得较为精确的光学带隙测量结果.
2 实验方法
本研究所涉及的几个样品(包括绿光样品 SG1 和 SG2 以及蓝光样品 SB)均为基于 InGaN/GaN 多量子阱结构的发光二极管(LEDs),并且都是通过金属有机化学气相沉积(MOCVD)方法在蓝宝石衬底或硅衬底上外延生长而成.其制备过程简述如下:以三甲基铝(TMAl)、三甲基铟(TMIn)、三甲基镓(TMGa)、氨气(NH3)、硅烷(SiH4)和二茂镁(Cp2Mg)分别作为 Al、In、Ga、N、Si 和 Mg 的源,并在衬底上依次生长低温成核层、非故意掺杂的 GaN 层、Si 掺杂的 n 型 GaN 层、InGaN/GaN MQWs 层(即有源区)、Mg 掺杂的 p-AlGaN 电子阻挡层和 p-GaN 接触层.芯片面积为 1.16 mm × 1.16 mm.样品结构及具体参数分别如图 1 和表 1 所示(具体细节可参见文献[23–26]).
同时,所涉及的与上述样品相关的 EL 数据,也皆为来自我们以前的研究工作 [23-26].这些 EL 数据主要包括: 1)不同注入电流下 EL 谱的温度依赖性;2)目标温度(300 K)下 EL 谱的注入电流依赖性.对于上述测量,样品被置于封闭循环液态氦(He)制冷的样品室内,温度可调范围为 6 至 350 K.一个 Keithley 2400 源表被用作激发电流源,可调电流范围为 0.01 至 350 mA.来自样品的信号经过汇聚透镜收集后进入 Jobin-Yvon iHR320 单色仪,并经单色仪分光后由热电制冷的 Synapse CCD 探测器进行探测.
3 结果和讨论
图2显示了注入电流为5 µA时一个基于InGaN/GaN 多量子阱结构的绿光样品(SG1)和一个基于 InGaN/GaN 多量子阱结构的蓝光样品(SB)的 EL 峰位能量和线宽的温度依赖性.由图 2 可见,绿光样品 SG1 的峰位能量和线宽都显示了一个近似的“V-型”(增加降低)温度依赖行为;相比之下(图 2 的插图),蓝光样品 SB 的峰位能量则显示了一个“S-型”(降低-增加-降低)温度依赖行为,同时它的线宽显示了一个近似的“W-型”(降低-增加-降低-增加)行为.这两个样品的上述行为均可被归因于 InGaN 阱层中组分起伏所诱发的势起伏以及由此产生的载流子复合的局域特征[27,28].然而,相比之下,绿光样品 SG1 应当有一个更强的载流子局域效果,这是因为在高温范围内(大于 200 K)蓝光样品 SB 所展现的峰位能量随温度降低的行为近似地遵从自由载流子的一般热化过程(即遵从 Varshni 方程
论文指导 >
SCI期刊推荐 >
论文常见问题 >
SCI常见问题 >