树人论文网一个专业的学术咨询网站!!!
树人论文网

基于AMEsim的高水基Sic纳米液压介质黏度特性仿真分析

来源: 树人论文网发表时间:2020-01-16
简要:摘 要: 为研究高水基Sic纳米液压介质的黏度特性,首先采用两步法制备较高稳定性的纳米流体样品并对其流体属性进行分析测试,得出流体属性值,然后通过AMEsim软件的Media Property A

  摘 要: 为研究高水基Sic纳米液压介质的黏度特性,首先采用两步法制备较高稳定性的纳米流体样品并对其流体属性进行分析测试,得出流体属性值,然后通过AMEsim软件的Media Property Assistant建立高水基Sic纳米液压介质的流体模型,最后应用AMEsim软件对纳米流体、纯水和46#液压油的黏度特性进行数值模拟仿真计算,并讨论其在不同温度、压力和溶解空气条件下的变化情况,通过对仿真结果的分析总结出高水基Sic纳米液压介质的黏度特性,为纳米流体作为功能流体的应用提供仿真算法基础。

  关键词: 液压介质;纳米;黏度;仿真;功能流体

软件导刊

  《软件导刊·教育技术》是湖北省电教馆与由湖北省信息学会联合主办的教育技术类全国公开刊物。作为业内直接面向全国中小学信息技术教育的媒体。

  0 引言

  基于水壓传动技术,现代液压技术正在不断的发展和完善,已经成为一门新兴技术。19世纪以前,纯水作为主要的液压介质应用于不同的液压机械和元件上,但由于纯水黏度低、易腐蚀元件,润滑性和密封性较差,以及受电气传动的影响,导致液压技术发展停滞不前[1-3]。20世纪初期,石油工业的兴起和耐油合成橡胶的出现使液压技术转型进入油压传动时代[4-7],矿物型液压油成为最主要的液压介质,极大地提高了液压元件及系统性能。

  目前,受环保节能生态理念的影响,液压工作介质朝两个方向发展[8-11]:一是以水作为液压工作介质的水液压系统,二是发展环保型液压工作介质。综上所述,特制备了一种具有良好的可压缩性、黏性、润滑性、安定性、抗泡沫性、阻燃性、洁净性,相容性以及热导率大,体积膨胀系数小的高水基纳米液压介质,具有传递动力、润滑、密封、冷却及防锈等功能。黏度作为液压介质的重要性能指标,影响着液压系统的各项性能。黏度过低,流体机械磨损量较大,易造成系统泄漏;黏度过高,液阻增加,机械效率降低,因此只有选择合适黏度的液压介质,在外部环境(温度、压力)都适宜的情况下,才能降低系统能量损失和磨损量。基于上述分析,以高水基纳米液压介质[12-14]动力源为研究对象,分析在不同压力和温度下,液压介质黏度的变化及其对系统的影响,为环保型高水基纳米液压介质的应用提供参考。

  1 液压介质黏度影响因素

  流体在外力作用下流动时,分子间内聚力的存在使其流动受到牵制, 从而沿其界面产生内摩擦力,这一特性称为液体的黏性[15-19]。液压油黏度是对黏性大小的表示。常用的黏度有3种:动力黏度、运动黏度、相对黏度。在液压系统中,液压介质黏度受温度、压力、气泡的影响呈线性变化,尤其温度影响最大,温度上升,黏度下降,这一现象称为黏-温特性,再者,黏度随压力增大而变大,不过这一现象在压力较低时并不明显,当压力大于50 MPa时,压力的影响变得显著。当压力大于1×109 MPa时,矿物油将变成固体。另外,气泡对黏度也有一定的影响。

  2 纳米流体建模与仿真

  Sic纳米流体作为液压介质时,黏度会随着温度、压力、混入的空气量产生变化,造成系统性能降低甚至直接受损,因此提出一种基于AMESim软件进行纳米流体属性仿真的方法[19,20],探究在不同温度,不同压力及混入不同空气量的情况下,Sic纳米流体黏度的变化情况。

  2.1 纳米流体制备

  作为环保型液压介质,纳米流体除具有一般流体的性质外,还具有良好的润滑性和导热性。在进行纳米流体仿真之前,首先通过“两步法”制备得到了Sic纳米流体样品,制备流程如图1所示,按照n(SiC)∶n(CMC)=3的物质的量之比进行配比,得到了沉降稳定性较好的纳米流体如图2所示。制备过程中所用材料及设备如下:Sic纳米材料(45 nm,江苏先丰纳米科技有限公司)、基础液(实验室自制的RO反渗透膜处理水)、分散剂(羧甲基纤维素钠CMC);JPT-1架盘天平、JH-100数显恒温控速电动搅拌器(金坛市晶玻实验仪器厂)、KQ超声波清洗仪(东莞市科桥超声波设备有限公司)、工业冰箱(东莞市威诺试验设备有限公司)、SNB-1数字旋转粘度计(维德仪器仪表有限公司)、BSY-109密度测定仪(大连北港石油仪器有限公司)、分光光度计(上海菁华科技仪器有限公司)800型离心机、电子分析天平、烧杯。

  图1 高水基纳米流体制备流程

  Fig.1 High water-based nanofluid preparation process

  图2 Sic纳米流体样品

  Fig.2 Sic nanofluid sample

  以下通过对Sic纳米流体基本属性进行理论分析,采用相关仪器设备对Sic纳米流体样品进行测试得到不同属性特征值,为Sic纳米流体的黏度仿真模型建立提供了准确的实验数据。

  2.2 纳米流体建模

  2.2.1 黏度理论

  黏度是度量黏性大小的物理量,通常用运动黏度黏度和动力黏度表征,两者的关系由以下公式得出:

  (1)

  式中,μ—动力黏度;τ—剪应力;—剪切率;ν—运动黏度;ρ—液体密度。

  温度变化使液体内聚力发生变化,因此液体的黏度对温度的变化十分敏感,温度升高,黏度下降,这一特性称为黏温特性。试验验证,当温度在30~150℃范围内,对运动黏度ν<76 cSt的液体,其黏度与温度的关系可以表示为:

  (2)

  其次,当液体所受的压力增加时,分子间的距

  離缩小,内聚力增大,其黏度也随之增大。在实际工程中,当压力大于5 MPa,需要考虑压力对黏度的影响,其关系式为

  (3)

  根据以上纳米流体的基本特性理论分析,对流体基本属性测定结果如下,其工作温度范围为5~55℃,工作压力范围为0~50 bar,参考压力等于1 bar,参考体积模量等于13000 bar。

  表1 Sic纳米流体属性特征值

  Tab.1 Sic nanofluid attribute eigenvalues

  测试方法 Sic纳米流体特征值

  运动粘度(单位:cSt) ASTM D445

  8℃时运动粘度 49.23

  25℃时运动粘度 18.90

  60℃时运动粘度 8.35

  20℃时密度(单位:kg·m–3) ASTM D4052 1.0055

  体积弹性模量(单位:N·m-2)

  20℃恒压下比热容(单位:J·(kg·℃)–1)

  20℃时的热导率(单位:W·(m·℃)–1) 2.43

  4180

  0.645

  2.2.2 仿真模型建立

  通过AMESim软件对Sic纳米流体的基本属性进行仿真研究[21],首先将计算好的Sic纳米流体属性特征数据编译到软件中,其次对编译好的系统进行参数设置,最后进行仿真测试,绘制数据图。

  根据以上步骤在AMESim热液压子系统中搭建的Sic纳米流体属性仿真模型如图3所示。

  将表1的Sic纳米流体属性特征值通过AMEsim软件的Media Property Assistant模式建立物理模型,

  如图4所示。

  图3 Sic纳米流体属性仿真模型

  Fig.3 Sic nanofluid property simulation model

  (a)动力粘度 (b)密度 (c)比热比

  (d)热导率 (e)体积弹性模量 (f)热膨胀系数

  图4 Sic纳米流体物理模型图

  Fig.4 Physical model diagram of Sic nanofluid

  图4所示的Sic纳米流体物理模型图包含:(a)动力粘度;(b)密度;(c)比热比;(d)热导率;(e)体积弹性模量;(f)热膨胀系数。图中的紫色到红色的彩虹色带标定了以上Sic纳米流体特性由大到小的回归函数值,从图中可以得到Sic纳米流体的物理模型是合理的,符合Sic纳米流体的基本属性特征。

  2.3 仿真分析

  文中采用AMEsim软件,搭建了液压回路系统的基本结构参数化模型如图5所示。

  此液压回路系统中包括电机、液压泵、溢流阀、两位四通换向阀、液压缸和负载质量块,而对于本论文最关键的两个模块一是fluidprops流体属性模块,二是液压源模块。流体属性模块它可以对整个系统在不同温度和压力环境下的液压介质进行实时准确监测。液压源模块是液压系统的液压介质属性模型,本文基于此建立了46号液压油、纯水和高水基Sic纳米流体三种液压介质模型,建立方法如3.2节所示,液压系统设定的温度范围为5℃~100℃,压力值为0~5 MPa,空气含量是通过选择AMEsim软件流体属性模型参数的noon和standard caviation模式。