树人论文网一个专业的学术咨询网站!!!
树人论文网

不同群落类型土壤惰性碳含量特征与维持机制

来源: 树人论文网发表时间:2019-12-06
简要:摘 要:為实现土壤碳的有效管理、科学评测中国小兴安岭森林生态系统土壤碳库动态趋势及其在全球碳循环中的功能和地位,采用年代序列法研究小兴安岭退化森林生态系统不同群落类

  摘 要:為实现土壤碳的有效管理、科学评测中国小兴安岭森林生态系统土壤碳库动态趋势及其在全球碳循环中的功能和地位,采用年代序列法研究小兴安岭退化森林生态系统不同群落类型土壤惰性碳含量与维持机制。研究表明:原始阔叶红松林土壤惰性碳积累最高,其次是云冷杉林,蒙古栎林最少。土壤惰性碳含量与土壤含水率、土壤毛管孔隙度均呈显著线性正相关,与土壤容重呈显著线性负相关。原始阔叶红松林、白桦次生林、黑桦林土壤惰性碳含量与土壤全氮呈显著线性正相关;白桦次生林、黑桦林土壤惰性碳含量与土壤全磷呈显著线性负相关关系;原始阔叶红松和枫桦次生林土壤惰性碳含量与土壤全钾含量呈指数关系,云冷杉林、白桦次生林、蒙古栎林和黑桦林土壤惰性碳含量与土壤全钾呈显著线性负相关。结论:不同群落类型土壤惰性碳含量差异显著,调控土壤惰性碳积累与维持的因子与群落类型、土壤理化性质。本研究结果可为准确预测全球变化背景下中国小兴安岭地区退化森林生态系统碳汇动态、固碳效益评价提供科学参考。

  关键词:不同群落类型;惰性碳;积累;维持机制

森林与人类

  《森林与人类》是中国第一家大众绿色科普期刊,创刊于1981年的《森林与人类》杂志。2002年,《森林与人类》被中宣部、科技部和中国科协联合命名为“全国科普先进集体”。

  0 引言

  陆地生态系统碳库分为植被碳库和土壤碳库[1],森林是陆地生态系统的重要组成部分,森林退化是全球面临的热点问题[2]。退化的森林生态系统严重影响多种生态功能的发挥,不同恢复阶段群落内植被、土壤和微生物等各指标变化可以反映系统结构恢复进程与群落内环境与恢复过程之间的量化关系,有助于正确理解系统恢复过程的机制,为人工恢复与重建提供决策基础。土壤碳库在全球碳循环中起着不可替代的作用,维持着植被碳库存,是全球碳循环的重要组成部分。土壤碳库包括有机碳和无机碳,随着土壤有机碳分类发展,很多学者开始对有机碳进行大量研究。惰性碳是相比活性碳周转速率慢的那部分有机碳,能长期为土壤提供养分[3]。

  惰性碳库是土壤碳库的重要组成部分,因其非常稳定且周转时间长,常常作为全球变化影响下土壤对环境长期变化的响应指标。向慧敏研究鼎湖山不同海拔高度上森林土壤惰性碳与土壤理化性质存在显著相关,土壤理化性质的改变是引起不同海拔高度森林土壤惰性碳组成变化的重要原因[4]。习丹等研究鹤山不同植被类型土壤惰性碳含量0~10 cm层受植被类型影响[5]。

  不论何种植被类型,土壤惰性碳含量均随着土层深度的增加,土壤惰性碳含量表现出递减的趋势,原因是随土层的加深微生物活性减弱,植物枯枝落叶在土壤层中位置较深,分解变慢,同时表层土壤惰性碳含量由于植被的生长和枯枝落叶等分解增加了表层土壤有机碳含量,从而使惰性碳储量获得增长[4]。不同植被恢复模下土壤惰性有机碳库比例的高低顺序是:灌丛,旱地,林地,果园。尽管林地土壤惰性碳库含量较旱地低,但林地土壤活性有机碳库积累较多[3]。因此,对小兴安岭退化森林生态系统不同群落类型土壤惰性碳进行研究,试图揭示森林退化环境对土壤有机碳库的积累及其调控作用。研究结果对于实现土壤碳的有效管理、科学评测中国温带森林生态系统土壤碳库动态趋势及其在全球碳循环中的功能和地位也具有重要的意义。

  1 研究区概况及研究方法

  本研究样地位于凉水国家级自然保护区(北纬47°10'50"、东经128°53'20"),属于中国小兴安岭山脉。该区具有明显的温带大陆性季风气候特征,年均气温-0.3 ℃,年均最低气温-6.6 ℃,年均最高气温7.5 ℃,年降水量680 mm,无霜期120 d。地带性植被为以红松为主的针阔混交林,林龄250 a以上。同时分布有20世纪50至80 年代阔叶红松林被大面积砍伐后形成的以白桦、枫桦和山杨为主的天然阔叶次生林,林龄在40 a以上。该地区为典型的低山丘陵地貌,海拔为300~500 m,坡度多为10°~45°,地带性土壤类型为暗棕壤。

  2 结果与分析

  2.1 退化森林生态系统土壤惰性碳积累特征

  阔叶红松林土壤惰性碳随土壤层的加深而减小,同一土层土壤惰性碳积累表现为:0~10 cm层为阔叶红松林>枫桦次生林>白桦次生林>云冷杉林> 蒙古栎林>黑桦林。原始阔叶红松林为34.22±21.90 g/kg,枫桦次生林为21.97±14.15 g/kg。10~20 cm层为原始阔叶红松林>枫桦次生林>云冷杉林>蒙古栎林>白桦次生林>黑桦林。20~40 cm层为阔叶红松林>枫桦次生林>蒙古栎林>黑桦林>白桦次生林,40~60 cm层为云冷杉林惰性碳积累最多,其次为原始阔叶红松林,蒙古栎林最少。不同群落类型土壤惰性碳积累随土层的增厚而减少,垂直结构差异不显著(P<0.05),土壤惰性碳主要累积在土壤表层(图1)。

  PKF: 原始阔叶红松林Pinus Koraiensis Sieb.et.Zucc; BCF: 枫桦次生林Betula costata Trautv; BPF: 白桦次生林Betula platypylla Suk ;PJF: 云冷杉Picea jezoensis(sieb.et zucc.)Carr.; QMF: 蒙古櫟Quercus mongolica Fisch; BDF: 黑桦次生林Betula davurica Pall.

  2.2 土壤惰性碳含量与土壤含水率关系

  不同群落类型土壤惰性碳含量与土壤含水率之间呈线性正相关,其中,原始阔叶红松林(R2=0.49)和枫桦次生林(R2=0.435)相关性较大(P<0.001),云冷杉林土壤惰性碳含量与土壤含水相关关系达到极显著,但相关系数较低(图2),说明阔叶红松林与枫桦次生林惰性碳积累受土壤含水率影响较大,参见文献[6]。而蒙古栎林和黑桦林土壤惰性碳积累与土壤含水率无显著相关性,与其种群分布及立地条件有关。

  2.3 土壤惰性碳含量与土壤容重关系

  不同群落类型土壤惰性碳含量与土壤容重呈显著线性负相关(P<0.01)。阔叶红松林土壤惰性碳与土壤容重拟合效果较好,其次为白桦次生林和蒙古栎林,表明土壤容重的增大会降低土壤惰性碳的积累,参见文献[6](图3)。

  2.4 土壤惰性碳含量与土壤毛管孔隙度关系

  6種群落类型土壤惰性碳积累与土壤毛管孔隙度关系均为线性正相关,除枫桦次生林未达到显著程度外,其他群落类型均达到显著正相关关系(P<0.01)。黑桦林土壤惰性碳含量与毛管孔隙度拟合效果较好,达到0.70。其次为白桦次生林(R2=0.481),如图4所示。

  2.5 土壤惰性碳含量与土壤全氮含量关系

  土壤惰性碳含量与土壤全氮含量均呈正相关,阔叶红松林(R2=0.208)、白桦次生林(R2=0.526)、黑桦林(R2=0.685)。土壤惰性碳含量与土壤全氮含量呈显著线性正相关,但离散度较大,相关系数较小,枫桦次生林土壤惰性碳含量与土壤全氮含量无显著相关性,如图5所示。

  2.6 土壤惰性碳积累与土壤全磷含量关系

  阔叶红松林、枫桦次生林、云冷杉林土壤惰性碳积累与土壤全磷含量均未达到显著程度。白桦次生林土壤惰性碳积累与土壤全磷呈极显著负相关。蒙古栎林土壤惰性碳与土壤全磷呈指数正相关关系,黑桦林土壤惰性碳积累与土壤全磷呈显著负相关(P<0.05),如图6所示。

  2.7 土壤惰性碳积累与土壤全钾含量关系

  土壤惰性碳含量与土壤全钾含量表现为指数正相关关系,即随着土壤全钾含量的增长,土壤惰性碳积累呈明显的指数上升趋势,但是阔叶红松林土壤惰性碳积累与土壤全钾含量呈显著相关(P<0.05),枫桦次生林相关性不显著(P>0.05)。白桦次生林、蒙古栎林和黑桦林土壤惰性碳积累与全钾含量达到极显著负相关(P<0.001),如图7所示。

  3 结论与讨论

  3.1 不同群落类型土壤惰性碳积累特征

  小兴安岭退化森林生态系统不同群落类型土壤惰性碳积累为原始阔叶红松林含量最高,其次是云冷杉林,蒙古栎林最少,差异极显著(P<0.01)。本研究中6种群落类型林龄相差较大,原始阔叶红松林林龄约为200 a以上,其他次生群落林龄均为40 a左右。原始阔叶红松林群落发育成熟,物种多样性丰富,土壤中含有大量氮素的腐殖质,维持着一个活跃的微生物群,使腐烂的根系及枯枝层养分比次生林更为丰富[7],且湿度适宜,养分释放与归还能力强,有机碳积累就高[3,8]。蒙古栎林土壤层较薄,分布土壤较贫瘠,土层较松(平均1.01~1.05 g/cm3),砂粒含量较大,影响地层总有机碳量[3],进而影响惰性碳含量,研究结果与前人研究的结果一致[9]。

  3.2 不同群落类型土壤惰性碳含量与维持机制

  土壤惰性碳含量直接或间接影响土壤物理、化学性质及土壤肥力。而土壤容重的大小可以衡量土壤通透性,直接影响土壤通气、透水性能[10]。本研究6种群落类型土壤惰性碳与土壤容重线性负相关,且差异达到极显著水平,即土壤容重的升高会造成土壤惰性碳含量的降低,与很多人研究结果一致[11-13]。土壤容重的升高,土体变得紧实,影响土壤的水、热循环,土壤孔隙度逐步降低,从而导致有机碳含量降低,6种群落中有5种群落土壤惰性碳与土壤容重相关性较高,除蒙古栎林除外,主要与群落优势树种分布、群落区域环境有关。

  研究表明,土壤含水率与土壤惰性碳含量有一定的相关性。原始阔叶红松林退化进程中,进入大量的阳性阔叶树,增加了凋落生物量,从而提高了土壤有机碳含量,而这种影响在浅层表土中表现得更为明显。这是由于表层土壤温湿度,有利于微生物活动,加速凋落物分解[7]。

  阔叶红松林、白桦林、黑桦林土壤惰性碳含量与土壤全氮含量呈正相关,与其他学者研究结果一致[14-18]。土壤氮的含量和类型跟物种及群落演替有一定相关性,群落发育过程中,凋落物的产生,增加了土壤有机物质和营养元素含量,改善土壤环境,也为对土壤养分积累提供必要条件[19]。

  白桦林和黑桦林土壤惰性碳含量与土壤全磷含量有一定的负相关性,不同群落类型其相关性不同,与群落分布区、森林土壤成土母质有关。云冷杉林、白桦次生林分布于地势较低、土壤含量较大区,形成相对湿冷的环境。黑桦林均分布阳坡上陡坡,土壤层较薄,岩石裸露,土壤中有机物质容易被雨水带走[7]。

  云冷杉林、白桦林、蒙古栎林和黑桦林土壤惰性碳与土壤全钾含量均呈线性负相关,该结果与祁金虎等研究结果一致[20],土壤有机质能促进含钾矿物质风化,从而土壤有机质增加土壤全钾质量分数随之增加[21]。

  【参 考 文 献】

  [1]陈泮勤.地球系统科学合作伙伴及对我国在该领域发展的建议[J].中国科学院院刊,2004,23(6):425-428.

  CHEN P Q. The earth system science partner and suggestions on China’s development in this field[J]. China Academic Journal Electronic Publishing House, 2004(6):425-428.

  [2]徐欢,李美丽,梁海斌,等.退化森林生态系统评价指标体系研究进展[J].生态学报,2018,38(24) : 9034-9042.

  XU H, LI M L, LIANG H B, et al. Review of the evaluation index system for degraded forest ecosystems[J]. Acta Ecologica Sinica, 2018, 38(24):9034-9042.