摘要:我国对海洋可控源电磁勘探方法的研究起步较晚,目前海洋采集数据的处理流程较为单一。在经典的数据处理流程中,仍缺乏针对由存储设备读写、船速和长线源源距变化等造成的畸变电磁响应的数据处理方法。本文针对存储设备运行造成的规则干扰提出一种基于功率谱分析的自动压制方法;对 于 船速和长线源源距变化的干扰建立了分时窗畸变校正流程;最后,结合合成孔径源技术进一步增强了有效信号的强度。实测数据处理结果表明,文中提出的畸变校正与信号增强方法,在提高电磁数据信噪比的同时,增强了来自海底地层的有效信号幅度。
关键词:海洋可控源电磁法;预处理;信号修正;合成孔径
汪轩; 沈金松; 王志刚; 孙卫斌, 吉林大学学报(地球科学版) 发表时间:2021-11-26
0 引言
海 洋 可 控 源 电 磁 (marinecontrolled-sourceelectromagnetics,MCSEM)是一种感应类电磁勘探方法,通过测量和处理主动激发源激发的低频电磁场信号,获得海底地层的电阻率分布,从而推断海底储层的含油气性[1-3]。MCSEM 数据的系统处理流程已由国际电磁服务公司 OHM 和 EMGS开发建立,限于商业服务竞争和知识产权保护,目前仍处于垄断和保密阶段[4]。因此,研发具有自主知识产 权的 MCSEM 数据处 理 方 法 并 逐 渐 形 成 相 应 的 处 理系统,对于我国丰富海洋资源的勘探与开发具有重要的实际意义。国际上,海洋可控源电磁数据预处理技术已有诸多进展。Behrens[5]开发了基于 Matlab环境的海洋电磁数据处理算法,处理流程包括:时频转换、椭圆极化方位 校 正、导 航 数 据 合 并 和 随 机 噪 声 估 计。Lu等[6]提出了利用被动频率信号构建的噪声模型消除主动频率信号中噪声的去噪方法。Myer等[7]应用一阶差 分 预 白 技 术 压 制 了 大 地 电 磁 等 频 谱 污染。Mattson等[8]应用空间平均滤波和奇异值分解技术对拖曳式海洋可控源电磁数据进行去噪分析。Maclennan等[9]把时间域的等效源方法引入频率域可控源电磁数据去噪之中。
国内,在国家863计划“深水可控源电磁勘探系统开发”课题的推动下,6所大学的不同课题组、2家企业的研究人员共同研发具有 自 主 知 识 产 权 的MCSEM 勘探系统,目前已取得诸多成果[10]。中国海洋大学的李予国课题组提出一套 MCSEM 数 据预处理方法,并应用于实际数据处理[11-12]。中国地质大学(北京)的 邓 明 课 题 组 基 于 C++11语 言开发了一套 MCSEM 数 据可 视 化 预 处 理 软 件[13-14],并把压 缩 感 知 技 术 引 入 对 MCSEM 数 据去 噪 的 处理中[15]。同校的 魏 文 博 课 题 组 讨 论 了 不 同 时 域 滤波 时 窗 长 度 对 频 域 信 号 振 幅 的 影 响[16],并 利 用Hilbert-Huang 变 换 对 MCSEM 数 据 进 行 时 频 分析[17]。吉林大学 的 刘 财 课 题 组 建 立 了 MCSEM 数据预处理流程和软件,并改进了压制噪声的平滑滤波和双边滤 波 方 法[18]。中国石 油 集 团 东 方 地 球 物理勘探有 限 公 司 在 GMECS系 统中 开 发 和 集 成 了MCSEM 预处理模块,成功应用于中国南海北部油气区块[19]。随着国家863计划“深水可控源电磁勘探系统开发”的结题,我国已建立具有自主知识产权的 MCSEM 数据处理系统,实现了零的突破[10]。但与国际横向对比,我国对 MCSEM 数据处理方法的研究仍处于初步阶段。纵观国内已发表的 MCSEM数据处理方法和软件,基本采用经典的海洋可控源电磁数据预 处 理 流 程:时 频 变 换、椭 圆 极 化 方 位 校正、导航数据合并,未见关于“飞点”的规则噪声去除方法、时变源矩和时变偏移距的信号畸变修正。本文从实际勘探的发射信号和接收信号分析开始,基于经典数据预处理流程,提出规则噪声的去除方法、时变源矩的归一化校正和偏移距的航速修正,并进一步利用合成孔径源方法改善数据信噪比。所有处理过程均使用某海域可控源电磁实测数据。
1 发射信号与接收信号分析
为了鉴别接收电磁信号中的有效信号和噪声信号,首先对发射电流和接收电磁信号的组成进行分析。在 MCSEM 勘探中,通常根据峰值频率对勘探目标的敏感 度,选 用 基 频 能 量 高 的 方 波 信 号[20],也称为“Cox”方波。这种双对称方波的能量主要集中于基频和三次谐频,每个周期在切换电流极性时有短暂的时刻没有电流通过,可实现宽频带和可控相位输出。电偶极源激发的电磁场经过海底地层、海水及空气层的作用,返回到多分量电磁接收器。采集到的电磁场信号由来自地层的有效信号、大地电磁场与其他噪声组成。图1给出了某海域实测发射机电流波形及其频谱。由图1a可 见,发 射 机 的 稳 定 电 流 约 为800A,周期为12.5s。截 取100~150s时 窗作 傅 里 叶 变换,并输 出 频 段0.02~2.00 Hz于 图1b。图1b显示,发射机电磁能量主要集中于 基 频0.08 Hz和 三次谐 频 0.24 Hz,且 与 稳 定 电 流 的 幅 值 比 分 别 为0.823和0.762。
工作期间发射机随勘探船只沿测线拖动,接收器持续记录海底电磁场响应。图2给出了26个接收器中第一个接收器水平电场 Ex的时间序列。图2a为 MCSEM 接 收器 工 作 时 段 的 接 收 信 号;图2b为 MCSEM 发射源工作时段的接收信号,共16:35:47.625时长,其余为大地电磁和背景噪声信号。发射机开始工作时,发射机-接收器间距约为 10900m,对应于 电 磁 波 在 海 水 中 的 传 播 时 长 约 为 0.32ms,小于接收 机 时 间 采 样 间 隔1/1024≈0.98ms,所以可以认为发射机工作时段即为 MCSEM 记 录时间序列时段。需要注意的是,由于发射机发射信号与接收器的 采 样 频 率 不 同(发 射 机 为1024 Hz,而接收器为128 Hz),需 计算 两 组 时 间 序 列 的 交 集时段以确定 MCSEM 数据的起始与结束时刻。
2 规则噪声压制
对Ex的时间序列信号应用经典预处理方法,得到Ex的振幅 随 偏 移 距 变 化 (MVO)曲 线,见 图 3。在 MVO 曲线上,我们可以清晰观测到多个明显的异常值———“飞点”。对于明显的异常值,可以 采 用手动剔除的方法去除[10],但隐藏在正常信号之间的异常值无法通过肉眼观察识别,仍保留在采集信号之中。注意,噪声的信号振幅也可能与有效信号相近。a.接收器工作时段;b.发射源工作时段。图2 实测电场水平分量的时间序列Fig.2 Timeseriesofrealfielddata图3 某实测海洋可控源电磁数据的 MVO曲线Fig.3 MVOcurveofrecordedMCSEMdataset对发射源工作时段的 Ex时间序列进行离散短时傅里叶变换,并绘制其功率谱(图4)。从图4中可以观测到不同频率下信号的分布,同时也可以观测到多条 浅 色 竖 线。我 们 高 亮 这 些 浅 色 竖 线 并 把Ex的 MVO 曲线叠加覆盖在功率谱之上,得到图5。图5清晰地表明飞点噪声具有独特的功率谱特征。我们抽取图5中第393、514和1197号时窗的规则噪声功率谱曲线和非规则噪声功率谱曲线,并绘制于图6中。由图6a可见,在非激发频 段 上,规 则 噪声的功率谱呈现相似的曲线形态,功率谱随频率的增大而减小;反 观 一 般 信 号(图6b),在 非 激 发 频 段上呈现不规则的变化,无相似性特征。
通过上文的分析我们可以发现,此飞点噪声并非随机噪声,而是具有一定特征的规则噪声。利用其信号的独特性和普遍性特征可以自动压制所有此类 规 则 噪 声。我 们 提 出 了 5 步半自动去噪方法:1)在单时窗功率谱曲线上光滑激发频率上的数值;2)人工挑选一条明显的规则噪声,并记录其时窗号;3)计算其余时窗 的 功 率 谱 曲 线 与 第2)步 挑 选 规 则噪声功率谱曲线的相关性;4)筛选出相关系数大于0.85的时窗;5)校正。MVO 曲线去噪效果如图7所示。通过调整筛选相关系数的阈值可以控制去除规则噪声的程度。另外,可以进一步使用图像识别技术代替第2)步的人工挑选工作,实现全自动去噪。此规则噪声可能是接 收 机 中 的 硬 盘 在 工 作 时 磁 盘 旋 转 引 起 的 噪声[5]。
3 MCSEM 测量数据校正
3.1 时变源矩计算与归一化处理
经时频转 换 后 的 MCSEM 频 域电 磁 场 数 据 需要依据发射源源矩进行源矩归一化处理。本文所采用电磁测量数据的电偶极源由2条拖缆上的前后两个电极组成,两电极间距 约 为300 m。对 于埋 深 远大于300m 的地质体而言,该电极组激发的电磁场可以近似认为电偶极子源激发的电磁场。由于拖缆的可延展性和施工环境的复杂性,摆动的拖缆导致电偶极子源的长度随时间变化,所以在作归一化处理时,需要考虑电偶极子源长度的变化,对不同时窗的电磁场数据采用不同的源矩归一化参数。设发射源源矩(M)为M =I·L 。 (1)式中:I 为电流,文中实测数据使用的电流为稳定电流800A;L 为源长。图8为实测电偶极子源源长随时窗变化曲线,平均源长约为304m,最大与最小源长差约为26m。图9为时变源矩与固定源矩归一化的振幅谱,图中虚线框内是局部振幅谱。由图9可知,20m 左右的源长变化对于Ex振幅谱存在较小影响。
3.2 偏移距船速修正
前文构建 MVO 曲线时,需要与导航数据合并,即实现对振幅谱与相位谱进行时窗-偏移距转换,其中的偏移距计算至关重要。由于海洋环境的不可控,海上作业难以确保船速均匀,因此,在时窗-偏移 距 转 换 时 应 对 时 变 船 速 加 以 修 正,以 提 高MCSEM 数据的定位精度。图10给出了某工区实测船速随时窗的变化曲线。平均船速1.38kn,约0.71m/s,在整个发射源工作时段内,船 速 在1.06~1.59kn之 间变 化。图11为原始偏移距、修正偏移距和偏移距修正量随时窗变化曲线。由图11可见,300号和900号时窗附近偏移距受船速影响较大;其中300号时窗存在约100m的负修正量,而900号 时窗 存 在 约190 m 的正修正量(正负号表示沿测线正向或负向修正)。图12为 船 速 修 正 前 后 Ex 分 量 的 MVO 曲 线。结合图11和图12可知,由于船速不均匀导致近偏移距与中到远 偏 移 距 之 间 存 在 最 大 约190 m 的 偏移 据 误差。
4 合成孔径源方法随机噪声压制与信号增强
在电磁响应修正的基础上,为了同时压制随机噪声和增强 有 效 信 号,我 们 应 用 合 成 孔 径 源 方 法。合成 孔 径 源(syntheticaperturesource,SAS)方 法最初由 Fan等[21]引入海洋可控源电磁领域,用于增强高阻油气储层的可探测性。本文应用这一方法实现数个单源响应的优化叠加,从而构建一个加长稳健的合成源响应[22-23],增强来自海底储层的有效信号,以提高海底电磁响应的信噪比。
4.1 方法原理
对于来自 N 个激发源的复电磁场数据,合成孔径源信号S 定义为[23-24]S(r,ω)= ∑ Nn=1exp(-iαc1Δrn)·exp(-αc2Δrn)·F(r,sn,ω)。(2)式中:F 为来自 单 源sn接收位 置r 的电磁 场 信 号; α=槡ωμσ/2 为电磁场的波数,ω 为角频率,μ 为磁导率,σ 为电导率;Δrn = rn -r1 为第n 个源与第1个源之间的距离;c1和c2分别为相移因子和振幅加权因子。为分析合成孔径源的应用效果,我们将标准化幅度作为可探测性 D 的度量:D(r,ω)=S(r,ω)/Sb(r,ω)。 (3)式中,Sb为背景模型下的合成孔径源信号。
现在我们 应 用 粒 子 群 算 法[25-26]优化c1和c2。在粒子群算法中,视向量x 为一个在高维度坐标系中可自由移动的粒子。由于通常有多个粒子(例如10~100)同时以特定交互规则搜索目标,所以称其为粒子群。每个粒子代表最优化问题的一个解,对于合成孔径源问题即为权重因子向量 (c1,c2);最优化问题的目标函数则是可探测性 D。通过单 个粒子简单的运动和粒子间特定的交互规则,寻找可探测性的最大值。每 个 粒 子 初 始 位 置 设 置 为 搜 索 空 间 中 的 随 机值。当粒子群开始搜索时,所有粒子同时向下一个位置移动:xk+1 i =xki +vk+1 i , (4)vk+1 i = αvki +U(0,β)(pi -xki)+U(0,β)(pg -xki)。(5)式中:xki 为第i个粒子在k 次迭代时的位置向量;vki 为第i个粒子在k 次迭代时的速度向量;pi为第i个粒子目前寻找到的最佳位置向量;pg为所有粒子目前寻找到的最佳位置向量;α 和β为正常数;U 为单位随机数生成函数。
由式(5)可见,在每次迭代中每个粒子的速度向量由三部分组成:第一部分是上一次迭代的速度,我们设置初始速度向量为v0i =(0.01,0.01);第二部分是第i个粒子当前位置与其历史最佳位置的距离(自我认知部分);第三部分是第i 个粒子当前位置与所有 粒 子 的 历 史 最 佳 位 置 的 距 离 (社 会 认 知 部分)。我们设置α=0.5,β=1.5[27]。当粒子群开始运动后,每个粒子对比其当前的D 和其历史最优D 值。如果目前 D 即为历史最优值,则pi更新为xi。在所有 粒 子 完 成 移 动 后,如 果pi是历史最优值,则pg更新为pi。下面,给出粒子群最优化算法步骤:1)初始化参数;2)计算每个粒子的目标函数;3)顺序更新每个粒子的最佳位置向量和所有粒子的最佳位置向量;4)所有粒子移动至下一位置;5)循环步骤2)—4)直至粒子移动向量小于某一阈值。
4.2 数值模拟和实测数据应用
鉴于文中的测量数据均为二维测线,下文分别基于单激发源测线的模拟数据和实测数据,应用合成孔径源方法,分析其增强有效信号的效果。模拟数据来自于三维崎岖海底储层模型。表1列出了去除海底崎岖的背景模型参数。
100Ω·m 的异常体规模设置为4km×4km× 100m,其顶界面位 于 海 底 以 下2km 处,异 常体 轮廓和崎岖地形轮廓如图13所示。接收器以均匀间距放置于海底,x 方向间距为500m,y 方向间距为2km,如图13所示。 我们计算合成孔径源(10个单源)的响应,然后比较单源与合成孔径源可探测性的差异。图14给出了合成孔径源与单源的可探测性分布。对于海水厚度为300m 的情形,合成孔径源方法提高了可探测性,在优化相移因子和振幅加权因子后,最大可探测性提高了5倍。
对于实测数据,利用测线上前6个接收器响应进行合成孔径源处理,并与单源(第一个接收器)作对比。图15为单源与合成孔径源电场 Ex的 MVO曲线。从图15看到,合成孔径源长大约6km,其响应幅值与单源相比在合成源右侧偏移距大幅度增高,有效信号能量增强,进而提高信噪比。
5 结论
本文对经典海洋可控源电磁数据预处理流程提出了预处理信号的进一步修正与增强方法。利用电磁信号的功率谱信息识别并去除规则噪声,分时窗矫正船速和发射源长度以及应用合成孔径源方法实现弱信号增强。将文中建立的处理方法应用于数值模拟数据及某工区的实测数据,得到如下认识:
1)信号 功 率 谱 特 征 是 识 别 规 则 噪 声 的 有 效 属性,使用人工或图像识别技术可以半自动或自动压制规则噪声。
2)对频率域电磁响应的时变源矩归一化和船速偏移距修正,提高了电磁响应对地下目标电性参数变化的分辨准度。
3)合成孔径源方法的应用,在不增加采集成本的条件下,进一步增强了有效信号的强度,提高了信噪比。
论文指导 >
SCI期刊推荐 >
论文常见问题 >
SCI常见问题 >