树人论文网一个专业的学术咨询网站!!!
树人论文网
学术咨询服务

POTENTIAL ANALYSIS

来源: 树人论文网 浏览次数:161次
所属分区:3区
周期:Bimonthly
ISSN:0926-2601
影响因子:1.031
是否开源:No
年文章量:55
录用比:容易
学科方向:数学
研究方向:数学
通讯地址:SPRINGER, VAN GODEWIJCKSTRAAT 30, DORDRECHT, NETHERLANDS, 3311 GZ
官网地址:http://www.springer.com/mathematics/analysis/journal/11118
投稿地址:https://www.editorialmanager.com/pota/default.aspx
网友分享经验:>12周,或约稿

POTENTIAL ANALYSIS杂志中文介绍

该期刊发表了关于势理论及其应用、概率论、几何和泛函分析,特别是椭圆方程和抛物方程解的估计的原始论文;半群、分解核、调和空间和狄利克雷形式的分析马尔可夫过程、马尔可夫核、随机微分方程、扩散过程和利维过程;分形上的扩散、热核和预分解核的分析无限维分析,高斯分析,无限粒子系统分析,相互作用粒子系统分析,吉布斯测量,路径和回路空间分析;与全局几何的联系,黎曼流形、李群、图等几何结构的线性和非线性分析;椭圆或抛物型方程和算子的非线性或半线性推广;谐波分析,遍历理论,动力系统;边值问题,马丁边界,泊松边界。

POTENTIAL ANALYSIS杂志英文介绍

This journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; and boundary value problems, Martin boundaries, Poisson boundaries.

POTENTIAL ANALYSIS影响因子