秩序提出了关于有序结构的最原始和创新的研究,以及图论和组合学,格理论和代数,集合论和关系结构以及计算理论中的有序理论方法的使用。 在这些类别的每一个中,我们都会寻求大量使用排序来研究数学结构和过程的提交。 秩序和组合学的相互作用是特别令人感兴趣的,将秩序理论工具应用于离散数学和计算中的算法也是如此。 关于有限和无限阶理论的文章是受欢迎的。秩序的范围由编辑部的集体利益和专业知识,这是在这些网页上描述的进一步明确。 提交作者被要求识别其兴趣最符合其工作主题的董事会成员或成员,因为这有助于确保有效和权威的审查。
Order presents the most original and innovative research on ordered structures and the use of order-theoretic methods in graph theory and combinatorics, lattice theory and algebra, set theory and relational structures, and the theory of computing. In each of these categories, we seek submissions that make significant use of orderings to study mathematical structures and processes. The interplay of order and combinatorics is of particular interest, as are the application of order-theoretic tools to algorithms in discrete mathematics and computing. Articles on both finite and infinite order theory are welcome. The scope of Order is further defined by the collective interests and expertise of the editorial board, which are described on these pages. Submitting authors are asked to identify a board member, or members, whose interests best match the topic of their work, as this helps to ensure an efficient and authoritative review.
SCI热门推荐期刊 >
SCI常见问题 >
职称论文常见问题 >
EI常见问题 >