神经计算欢迎旨在进一步了解神经网络和学习系统的理论贡献,包括但不限于架构、学习方法、网络动力学分析、学习理论、自组织、生物神经网络建模、感觉运动转换和跨学科。人工智能、人工生命、认知科学、计算学习理论、模糊逻辑、遗传算法、信息论、机器学习、神经生物学和模式识别等前沿课题。神经计算包括实际方面,并对神经计算的硬件和软件开发环境(包括但不限于仿真软件环境、仿真硬件体系结构、并行计算模型、神经计算机和神经芯片(数字、模拟、光学和生物制品)的进展作出贡献。神经计算报告在不同领域的应用,包括但不限于信号处理、语音处理、图像处理、计算机视觉、控制、机器人、优化、调度、资源分配和财务预测。出版物类型:神经计算出版有关神经计算和仿射领域的文献综述。神经计算会议报告,包括但不限于会议、讲习班和研讨会。神经计算信件允许快速出版特殊的短通信。
Neurocomputing welcomes theoretical contributions aimed at winning further understanding of neural networks and learning systems, including, but not restricted to, architectures, learning methods, analysis of network dynamics, theories of learning, self-organization, biological neural network modelling, sensorimotor transformations and interdisciplinary topics with artificial intelligence, artificial life, cognitive science, computational learning theory, fuzzy logic, genetic algorithms, information theory, machine learning, neurobiology and pattern recognition.Neurocomputing covers practical aspects with contributions on advances in hardware and software development environments for neurocomputing, including, but not restricted to, simulation software environments, emulation hardware architectures, models of concurrent computation, neurocomputers, and neurochips (digital, analog, optical, and biodevices).Neurocomputing reports on applications in different fields, including, but not restricted to, signal processing, speech processing, image processing, computer vision, control, robotics, optimization, scheduling, resource allocation and financial forecasting.Types of publications:Neurocomputing publishes reviews of literature about neurocomputing and affine fields.Neurocomputing reports on meetings, including, but not restricted to, conferences, workshops and seminars.Neurocomputing Letters allow for the rapid publication of special short communications.
SCI热门推荐期刊 >
SCI常见问题 >
职称论文常见问题 >
EI常见问题 >