计算机和流体是多学科的。“流体”一词的解释最广泛。只要计算机技术在相关研究或设计方法中起着重要作用,那么水动力学和空气动力学、高速和物理气体动力学、湍流和流动稳定性、多相流、流变学、摩擦学和流体结构相互作用都是重要的。在大多数工程和科学领域都有应用:机械、民用、化学、航空、医学、地球物理、核和海洋学。这些问题包括空气、海洋和陆地车辆运动和流动物理、能量转换和动力、化学反应器和运输过程、海洋和大气效应和污染、生物医学、噪音和声学以及磁流体动力学等。与流体流动计算有关的数值方法的发展、流动物理和流体相互作用的计算分析以及对流动系统和设计的新应用都与计算机和流体有关。基准解决方案也在期刊的范围内,将在专门的期刊上发表。关于验证和数字准确性的政策声明:计算机和流体将拒绝所有未按要求的准确性评估报告结果的手稿。以下项目应得到充分的数据和/或参考资料的讨论和支持:物理模型和流量配置说明:控制方程、边界条件和几何结构以及控制无量纲数(雷诺数、马赫数……)都应以读者可以重现结果的方式清楚说明。数值方法说明:应明确描述,包括边界条件和初始条件。应给出准确度的正式顺序。对于空间平滑解,方法应至少具有二阶空间精确性,局部一阶精确方法适用于具有不连续性(例如冲击)的流动。代码验证活动说明:应验证数值方案和算法的数值实现,例如使用分析解决方案、制造解决方案或高精度基准解决方案。所提出的结果在空间、时间和迭代上的收敛性应在手稿中得到解决。必须证明网格收敛性,考虑到应评估与自由度数有关的若干计算收敛性。对于绘制残差演化的稳态结果,应证明迭代收敛性。考虑到时间步长的若干值,应证明时间收敛性。基准解决方案和专用特殊问题:基准解是计算流体力学(CFD)中评估新数值方法精度和验证实际应用的重要工具。由于基准解决方案没有对流动物理带来新的见解,也没有对应于新的数值方法的呈现,因此它们将在专门的专刊上发表。作者应该充分地提交它们。重要的是,提出基准解决方案的文章应满足以下所有强制性要求:文章必须由至少两个不同机构的作者提交。应详细说明流量配置,并用通常的无量纲参数(雷诺数、马赫数、迎角等)进行参数化。本文应给出与至少一个配置参数(雷诺数、马赫数等)的参数探索相关的结果。所选的变化范围应至少包括流动拓扑或流动动力学中的一个分叉(例如流动分离的外观、附加特征频率的上升…)和控制参数的相关临界值必须仔细确定。强调新提出的基准解决方案应显著提高对数值方法能力的信心。因此,对于已经存在的文本案例的简单变化将不被接受。应至少使用三种不同的数值方法,并在所有图表上进行比较。商业CFD工具和广泛使用的开源解算器中可用的数值选项的简单比较将不被接受。如果手稿中的某些测试案例已经存在一些结果,则应给出相关的详尽参考列表,并使用相关数据进行比较。基准解决方案应不存在任何物理建模不确定性。因此,不应使用湍流模型或其他半经验物理模型。应至少考虑四个分辨率级别来评估网格收敛性。对于无网格和随机的方法,应该提出四个自由度的精化级别。手稿应向读者提供显示相关和有用物理量与(i)网格分辨率/自由度数和(i i)选定变化范围内的流量参数值的表格和图表。强烈建议作者以文本格式提供完整的数据集,作为补充材料。作者可以自由提出基准解决方案。如果提交的几篇论文在审查中涉及非常接近的测试案例,作者将被要求集中在一组测试案例上,并重新提交一篇普通的论文。
Computers & Fluids is multidisciplinary. The term 'fluid' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.Applications will be found in most branches of engineering and science: mechanical, civil, chemical, aeronautical, medical, geophysical, nuclear and oceanographic. These will involve problems of air, sea and land vehicle motion and flow physics, energy conversion and power, chemical reactors and transport processes, ocean and atmospheric effects and pollution, biomedicine, noise and acoustics, and magnetohydrodynamics amongst others.The development of numerical methods relevant to fluid flow computations, computational analysis of flow physics and fluid interactions and novel applications to flow systems and to design are pertinent to Computers & Fluids. Benchmark solutions are also within the scope of the journal and will be published in dedicated issues.Policy statement on validation and numerical accuracy:Computers & Fluids will reject all manuscripts that do not report results with the required assessment of accuracy. The following items should be discussed and supported by adequate data and/or references:Statement of the physical model and flow configuration: both the governing equations, boundary conditions and geometry and governing dimensionless numbers (Reynolds number, Mach number...) should be clearly explicated in such a way that readers may reproduce the results.Statement of numerical methods: they should be described in a clear way, including boundary conditions and initial conditions. Formal order of accuracy should be given. Methods should be at least second-order accurate in space for spatially smooth solutions, locally first-order accurate methods being appropriate for flows with discontinuities (e.g. shocks).Statement of code verification activities: numerical implementation of the numerical schemes and algorithms should have been verified, e.g. using analytical solutions, manufactured solutions or highly accurate benchmark solutions.Spatial, temporal and iterative convergence of the presented results should be asessed in the manuscript. Grid convergence must be proved considering several computational convergence with respect to the number of degrees of freedom should be assessed. Iterative convergence should be proved for steady-state results plotting residual evolution. Temporal convergence should be proved considering several values of the time step.Benchmark solutions and dedicated speical issues:Benchmark solutions are important tools in CFD to assess the accuracy of new numerical method and to validate practical implementation. Since benchmark solutions do not bring new insight into flow physics and they do not correspond to presentation of a new numerical method, they will be published in dedicated special issues. Authors should submit them adequately. It is important noting that articles presenting a benchmark solution should fulfill all following mandatory requirements:Article must be submitted by authors from at least two different institutions.The flow configuration should be exhaustively detailed and parameterized by usual dimensionless parameters (Reynolds number, Mach number, angle of attack...). The paper should present results associated to a parametric exploration of at least one configuration parameter (Reynolds, Mach...). The selected range(s) of variation should encompass at lest one bifurcation in flow topology or flow dynamics (e.g. appearance of flow separation, rise of additional characteristic frequencies...) and the associated critical value(s) of the governing parameter(s) must be carefully determined. It is emphasized that new proposed benchmark solutions should significantly increase the confidence into numerical methods capabilities. Therefore, simple variations about already existing text cases will not be accepted.At least three different numerical methods should be used and compared on all figures/tables. Simple comparisons of numerical options available in commercial CFD tools and widely used open source solvers will not be accepted.In the case some results already exist for some test cases presented in the manuscript, a related exhaustive reference list should be given and associated data used for comparision.The benchmark solutions should be free of any physical modelling uncertainty. Therefore, turbulence model or other semi-empirical physical models should not be used.Grid convergence should be assessed considering at least four resolution levels. For gridless and stohastic methods, four refinement levels in terms of number of degrees of freedom should be presented.The manuscript should provide the reader with tables and plots displaying values of relevant and useful physical quantities versus (i) grid resolution/number of degrees of freedom and (ii) flow parameters in the selected range of variation. Authors are also strongly encouraged to provide full data set in text format that will be made available as supplementary materials.Authors are free to propose benchmark solutions. In the case several submitted papers under review deal with the very close test cases, authors will be asked to converge on a set of test cases and to re-submit a common paper.
SCI热门推荐期刊 >
SCI常见问题 >
职称论文常见问题 >
EI常见问题 >