变分微积分和偏微分方程吸引并汇集了该研究领域的许多重要的高质量贡献,并强调了分析人员、几何学者和物理学家之间的相互作用。期刊中的相关内容包括:-变分积分的极小化问题,极小化器和临界点的存在性和正则性理论,几何测度理论偏微分方程的变分方法,线性和非线性特征值问题,分岔理论-微分和复几何中的变分问题-全局分析和拓扑的变分方法-动力系统,辛几何,哈密顿系统的周期解-数学物理中的变分方法,非线性弹性,晶体,渐近变分问题,均匀化,毛细现象,自由边界问题和相变-与微分几何、复几何和物理问题有关的孟-安培方程和其他全非线性偏微分方程。
Calculus of Variations and Partial Differential Equations attracts and collects many of the important top-quality contributions to this field of research, and stresses the interactions between analysts, geometers, and physicists.Coverage in the journal includes:- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory- Variational methods for partial differential equations, linear and nonlinear eigenvalue problems, bifurcation theory- Variational problems in differential and complex geometry- Variational methods in global analysis and topology- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems- Variational methods in mathematical physics, nonlinear elasticity, crystals, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
SCI热门推荐期刊 >
SCI常见问题 >
职称论文常见问题 >
EI常见问题 >