SCI期刊 | 网站地图 周一至周日 8:00-22:30
你的位置:首页 >  农业 » 正文

秸秆还田对土壤呼吸的作用

2021-4-10 | 农业

 

温室气体浓度的升高强烈地影响着气候变化,并导致人类生存环境的恶化。全球土壤呼吸年碳排放量为80.4Pg,是化石燃料燃烧CO2排放量的10倍多[12]。土壤呼吸是碳库中最活跃的部分,在全球陆地生态系统碳库中,碳储量约为140~170Pg,占全球陆地碳储量的10%[3]。在自然因素和农业管理(耕作、施肥和灌溉等)的双重作用下,农田生态系统受到强烈的人为干扰后,能在较短的时间尺度上进行碳库的调节,进而影响全球的碳循环[45]。可见,研究农业生态系统中土壤CO2的排放,对于减缓大气CO2浓度的增加有重要意义。

 

秸秆直接还田是当今秸秆资源利用的主渠道[6]。秸秆的施入对农田土壤CO2排放通量动态具有显著影响[7],同时通过改善土壤含水量、有机碳水平、水稳性团聚体等土壤性质可提高土壤质量和作物产量[810]。施肥作为农业土壤的一个主要干扰因素,不仅是提高作物产量的关键措施之一,而且影响土壤的理化性质和生物活性,进而影响土壤的碳循环[11]。但已有研究主要单一集中于秸秆[12]或者是肥料的施用量[1315]对CO2排放的影响,关于秸秆施入方式对土壤CO2排放影响的研究则很少见报道,而有关不同秸秆还田方式配施不同类型氮肥(有机氮和无机氮)对CO2排放影响的研究则更少。因此,以生态系统理论与方法对秸秆还田问题进行系统的研究具有重要意义。

 

黄淮海平原是我国主要的粮食产区,肥料的应用为粮食增产做出了巨大贡献,通过秸秆还田、施用有机肥来改善土壤结构、增加土壤碳库水平也越来越受到关注,但是关于秸秆还田对农业生态土壤原位CO2排放的试验资料还相对较少,且研究秸秆还田方式的影响对预测未来土壤CO2排放规律和农业减排措施也非常重要。因此,开展田间试验以评价不同秸秆还田方式对CO2排放过程的影响,探讨黄淮海平原秸秆还田方式、氮肥类型以及施氮量与夏玉米土壤呼吸的关系,可为综合评价秸秆不同还田方式和施肥的农田生态效应提供理论依据,并为该地区秸秆还田方式和施肥措施提供技术支持。

 

1材料与方法

 

1.1试验地概况

 

试验地点位于河南省封丘县中国科学院封丘农业生态国家试验站(北纬35°01′,东经114°32′)。该地区属半干旱半湿润的暖温带季风气候,年平均降水615mm,67%的降水集中在6—9月;平均气温为13.9℃,最低月均气温出现在1月,为1.0℃,最高月均气温27.2℃,出现在7月。该区域土壤发育为黄河冲积物潮土,农田耕作为冬小麦夏玉米轮作制度。

 

1.2试验设计

 

试验于2010年6—10月进行,试验设计见表1。通过处理NSFR、SFR、ISFR的比较,可以得到常规施肥条件下小麦不同秸秆还田方式对玉米土壤呼吸速率的影响;通过处理ISOM1、ISOM2、ISOM3之间的比较,可以得到小麦秸秆行间掩埋还田的情况下,配合施用有机氮肥(鸡粪)对土壤呼吸速率的影响;通过处理ISF1、ISF2、ISF3比较,可以得到小麦秸秆行间掩埋还田的情况下,配合施用无机氮肥(尿素)对土壤呼吸速率的影响。

 

各处理在整个玉米生育期总施氮量均为210kg(N)•hm2,施磷量157kg(P2O5)•hm2,施钾量105kg(K2O)•hm2,各处理N、P和K施用量见表2。每处理设4个重复,共有36个小区,每个小区均设为5m×8m。还田秸秆为上一季晒干的小麦整秆,其养分和含水量见表3。秸秆施用量7500kg•hm2。播种前,在玉米行间开沟20cm深,均匀放入小麦秸秆,并在秸秆上施用鸡粪(或化肥)后进行掩埋,鸡粪的养分含量见表3。试用玉米品种为“郑单958”,种植密度68034株•hm2,玉米行距和株距分别为60cm和30cm。2010年6月23日翻地、埋秸秆、施基肥,2010年6月24日播种,7月15日—8月15日玉米从拔节进入灌浆期,8月16日—9月5日为灌浆期,9月6日—10月5日为逐渐成熟阶段,10月5日收获。追肥时间为2010年8月1日和8月17日,分别为玉米拔节期和灌浆期,追肥方式为行间挖穴点播,基肥和追肥的施用量见表2所示。

 

1.3土壤呼吸作用的测定

 

土壤呼吸测定采用动态气室法,通过密闭交换式的采集气体系统(LI-COR-6400-09土壤气室)连接红外线气体分析仪(IRGA)对气室中产生的CO2进行连续测定,系统同时测定10cm深土壤的温度。测量气室放置在事先已经放入土壤中的PVC环上进行测量,为减少安置PVC环对土壤系统的破坏,第1次测定在安置24h后再进行,以避免由于安置PVC环对土壤扰动而造成的短期呼吸速率的波动[16]。PVC环直径11cm、高10cm,在2010年6月24日玉米播种后立即安置在两行玉米的中间,即掩埋秸秆区,PVC环埋入土壤后2cm露出地表以保证测量气室的密闭性,同时去除环内的一切活体,每个小区安置1个环,每次测定3次重复,仪器自动记录。在整个玉米生长季的测定过程中一直把PVC环保留在土壤中,于早晨09:00—12:00定期测定土壤呼吸[17],从玉米拔节初期,即7月24日开始测定,之后间隔5d测定1次至9月18日。

 

测定时密闭PVC环的土壤呼吸通量计算公式为:Q(μmol•m2•s1)=(C/t)×V/A=(C/t)×h(1)式中,C为时间间隔t(s)的密闭PVC环内CO2的浓度差(μmol•m3),h为环高(m)。在测定土壤呼吸速率的同时,使用便携式土壤水分测定仪(Hydrosense,Campbell,美国)测定5cm土层的土壤湿度,表示为容积含水量,通过计算换算成土壤孔隙含水量(WFPS),计算公式为:WFPS(%)=[含水量(%)×土壤容重(g•cm3)/土壤总孔隙度(m3•m3)]×100(2)式中,土壤总孔隙度(m3•m3)=1土壤容重(g•cm3)/2.65(g•cm3),本研究中,土壤容重按1.48g•cm3计算。降雨量和大气温度通过试验区内的气象站自动采集。试验期降水和大气温度见图1。

 

1.4数据分析

 

数据采用SPSS16.0和Excel2003软件处理。

 

2结果与分析

 

2.1玉米生长季土壤温度和水分的变化

 

玉米整个生长季,土壤湿度和土壤温度的变化如图2所示。土壤孔隙含水量(WFPS)变化范围为34%~82%,平均为66%。方差分析表明,9个处理之间,玉米生育期平均WFPS没有显著差异(P>0.05)。土壤温度最高29.52℃,最低20.84℃,平均24.91℃,方差分析表明,各处理间平均温度亦没有显著差异(P>0.05)。

Top

多对一·精细化服务

请填写信息,出书/专利/国内外/中英文/全学科期刊推荐与发表指导