2021-4-10 | 高等教育
近年来,伴随着中学数学教学内容的改革,高职生进入高职院校时,他们的数学知识基础不断发生变化,其特点之一就是高中数学内容中一元函数微积分知识的逐渐增加,而一元函数微积分又是高职院校高等数学课程的基础知识。
那么,根据高职生不断变化的一元函数微积分知识基础,如何应对这种变化,在高职院校的高等数学课程上,卓有成效地开展一元函数微积分知识的教学,成为高职院校高等数学教师期待解决的重要问题。
1一元函数微积分“快餐”教学的提出
高等数学课程是高职院校理工科各专业的重要专业基础课程,主要学习函数、极限与连续、导数与微分、导数的应用、不定积分与定积分、定积分的应用、常微分方程、无穷级数、向量代数与空间解析几何、多元函数微积分等内容。
但是这些内容的一部分在高中已经学过。
比如:山东省高中数学课程要求理科学生了解数列极限和函数极限的概念;掌握极限的四则运算法则;会求某些数列与函数的极限;了解函数连续的意义;了解闭区间上连续函数有最大值和最小值的性质;了解导数概念的某些实际背景;掌握函数在一点处导数的定义和导数的几何意义;理解导函数的概念;熟记基本导数公式;掌握两个函数和、差、积、商的求导法则;了解复合函数的求导法则;会求某些简单函数的导数;理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件;会求一些实际问题的最大值和最小值;利用定积分求一些平面图形的面积。
以上内容实际上是一元函数微积分的主要内容,也就是说,进入高职院校,高职生已经有了一元函数微积分的不少基础知识。因此,高职院校的数学教师要承认、掌握学生的已有数学知识基础,既不能忽略学生的已有基础,从头“事无巨细”全面讲解,也不能认为学生已经完全掌握了一元函数微积分的基础知识,跳过高中学习的内容,直接从中间内容开始讲解。笔者经过多年的精心研究与教学实践,发现在高职院校高等数学课堂上使用一元函数微积分“快餐”教学,可以较好地迎合高职生学习高等数学课程的需求,且在实践过程中取得了显著的教学效果。
2一元函数微积分“快餐”教学的概念
一元函数微积分“快餐”教学是指根据高职院校高等数学课程的教学基本要求,在高职生已有的一元函数微积分知识的基础上,通过高职生旧知与新问题的碰撞,以旧知驱动新知,采取丰富多样的教学方法,快捷、有效地为高职生讲解精简、实用的一元函数微积分知识体系。
一元函数微积分“快餐”教学要求在高职生原有的一元函数微积分知识的基础上,构建精简、全面、实用的一元函数微积分知识体系,在教学方法上注重“任务驱动”,充分体现“双主教学”。
其特点之一是:快且全面。“快”是指承认学生已有的一元函数微积分知识基础,不做简单重复的讲解,从学生专业学习的角度,采用问题驱动的方式,复习、归纳学生在高中已学过的一元函数微积分知识;“全面”是指根据教育部高职高专高等数学课程教学基本要求,通过“案例驱动”教学法,系统讲解在高中阶段没学习且高职生必需掌握的实用的一元函数微积分知识,让学生全面掌握“必需”、“够用”的一元函数微积分知识,为专业课程的学习打下良好基础。
其特点之二是:彰显专业、问题驱动认知兴趣。
高职院校的高等数学课程的学习是实现数学为专业课程的学习服务,在学习数学知识的过程中,要突出学生应用意识、应用能力的培养,提高学生独立分析、解决问题的能力。因此,在一元函数微积分“快餐”教学过程中,要根据学生的专业需求,呈现与专业相关的实际案例,让学生感到一元函数微积分与中学的学习侧重点明显不同,彰显一元函数微积分的应用性。
同时,在一元函数微积分“快餐”教学过程中,根据学生已有的一元函数微积分知识基础,善于制造学生利用已有知识无法解决甚至与已有知识相矛盾的问题,通过这样的问题驱动他们认知的兴趣。
3一元函数微积分“快餐”教学的实施方法
3.1掌握学生的一元函数微积分知识基础
目前,高职院校的招生大都以本省为主,面向全国招生。而全国各省市的高中数学内容各有不同,即使同一个省,文科生与理科生数学学习内容也有所不同。因此,真正全面掌握入校时高职生数学知识基础的高职院校数学教师很少。
即使高职院校的数学教师了解他们所教学生高中的数学教学基本要求,学生实际掌握的数学知识基础与数学课程教学基本要求之间还有一定的距离。所以,要根据学生已有的数学知识基础开展教学,高职院校的数学教师就要认真研究学生的高中数学教材,了解不断变化的高中数学课程基本要求。同时,开始上课前,还要采取问卷调查、摸底考试、与学生代表个别访谈等方式,走进学生,深入了解他们的实际知识水平,知道学生“已经会什么”、“还不会什么”、“需要什么”,全面掌握学生“一元函数微积分”的知识基础与水平。
3.2一元函数微积分“快餐”教学中教学内容的确定
在全面掌握学生的知识基础与水平后,根据教育部高职高专高等数学课程教学基本要求与学生的专业需求,依据各专业学生一元函数微积分的知识目标与能力目标,确定一元函数微积分的教学内容,包括需要重温的旧知和需要讲解的新知。
3.3确定一元函数微积分“快餐”教学的教学方法