SCI期刊 | 网站地图 周一至周日 8:00-22:30
你的位置:首页 >  高等教育 » 正文

高校数学史发展过程

2021-4-10 | 高等教育

 

我国高等院校的数学史教学始于20年前师范大学和个别综合大学数学系,并且发展迅速。1986年国内约有40所大专院校的数学系开设了《数学史》选修课,截至2001年国内多数大专院校数学系开设了该课程…。但其他非数学专业(如农科类)就鲜有人问津,因此,在数学教学中融人数学史就显得尤为重要。目前,高校数学教学过程中忽视数学史知识的传授,学生若想了解与高等数学内容密切相关的数学史知识,只能查阅专门的数学史专著;数学史内容与数学各分支(如数学分析、高等代数、解析几何、点集拓扑学等)基础知识完全脱离。实际上,数学史在高校数学教学中具有极为重要的地位,在数学课堂教学中适当地融人数学史知识可以提高学生学习数学的兴趣,培养他们严谨的治学态度和创新意识,也有助于学生对数学思想及基础知识的理解,从纵向发展的角度理解数学发展的动态过程。

 

1数学史应用于高等院校数学课程教学中的必要性

 

1.1加强数学史故事教学,提高学生学习数学的兴趣在当前高校的数学课堂教学中,教师普遍采取“满堂灌”的教学方式,主要讲授教材的基础知识与基本理论,这些知识固然重要,但是单纯的知识传授式教学只能让学生掌握知识,却无法深刻理解这些重要理论的来龙去脉。如果能够在讲述教材内容的过程中适当加入一些数学史上著名的故事,以解释数学家发现重要理论的动态过程,就可以使学生明白数学不仅仅是一些符号、公式,而且每一个重要理论的发现都凝聚着数学家的思想和智慧,这有助于学生提高学习数学的兴趣。如在讲解黎曼函数时,可简单介绍数学家黎曼的情况,据说他出任哥廷根大学讲师时发表了就职演说《关于几何基础的假设》,听众中仅有年迈的高斯能听懂,黎曼体弱多病,英年早逝。在课堂中,对数学家这些情况的介绍可引起学生的兴趣【21。这些数学史知识既可增加学生的学习积极性,又大大提高了数学的趣味性。但教材中这方面的知识较少,在传统的教学中也很少涉及,往往是枯燥的公式与定理,却没有相关数学家的介绍。

 

1.2培养学生严谨的治学态度历代科学家的足迹以及他们的思想方法是人类文化遗产中最宝贵的财富,也是知识宝库中的极品。在教学中,可将在科学发展史上有重大影响的典型实例进行深刻剖析,探寻数学家发现知识、创造知识的过程,并将他们所用的科学思想方法展现在学生面前,这是一种示范式教学,这种教学方法能够激发学生的创造能力。

 

在高校数学课堂教学中有针对性地融入适当的数学史知识,可以使学生在了解历史及历史上著名数学家做学问时的严谨态度,逐渐受到这种思想的无形影响。受益终生。

 

在讲解柯西定理时,可简单引进柯西的故事,据说他在巴黎科学院宣读第l篇关于级数收敛性的论文时,年高望重的拉普拉斯却大感困惑,会后急忙赶回家,检查自己的五大卷《天体力学》,结果发现其中用到的级数“幸好都是收敛的”【2j。这足以说明,拉普拉斯治学态度的严谨性。在讲解牛顿一莱布尼兹公式时,可对牛顿和莱布尼兹进行简单介绍,牛顿对于发表自己的科学著作态度谨慎,他早在1665—1667年就制定了微积分,发现了万有引力和颜色理论,但他的文章发表得较晚,牛顿微积分学说最早的公开表述出现在1687年出版的力学名著《自然哲学的数学原理》中,《流数法》甚至在他去世后才完成发表”J。科学家做学问的严谨态度可对学生产生潜移默化的影响。以数学家治学态度的严谨来熏陶学生,比单纯说教效果要好得多。

 

1.3培养学生的创新意识与参与精神让学生参与某些著名数学问题的讨论,可启发他们独立解决问题的能力,培养他们的创新意识,使其在参与中体验到成就感。如在讲到某些公开问题时,可简单介绍这些著名问题提出的过程,让学生体会到数学中创新的困难及克服困难的乐趣。解析几何的发明者之——笛卡尔出生于法国都伦的拉艾镇,他读书时有“晨思”的习惯,一次“晨思”时,他看见一只苍蝇正在天花板上,他突然想到,如果知道了苍蝇与两相邻墙壁的距离之间的关系,就能描述它的运动路线,这使他头脑中产生了关于解析几何的最初闪念,由此出发,1637年,笛卡尔在哲学名著《方法论》附录中,以古希腊一个著名的数学问题——帕波斯问题为出发点,建立了历史上第一个倾斜坐标系,从而证明了四线问题的帕波斯结论¨o。在解析几何的教学过程中,可向学生介绍笛卡尔的故事,并启发学生,如果要创新,就必须勤奋、善于思考生活中发生的一些常见现象,必须重视对数学史上历史问题(帕波斯『日】题)的思考,这其中可能有未来新知识蕴藏其中。

 

1.4有助于学生对数学思想、基础知识的理解了解数学家“发现问题—分析问题一解决问题”的全过程,解析他们思考深奥数学问题的方式,有助于学型对数学思想的把握、基础知识的理解。引导学生沿着科学的艰险道路作一次富有探索精神、充满为真理而斗争的崇高动机的旅行,使学生充分领略历史上数学家的灵感,获得他们的启迪,可以从中学到科学探索的方法。如讲解数学的抽象性时,可以向学生展示欧拉解决七桥问题的思考过程,或是介绍牛顿发明万有引力定律将地球、月球抽象为质点处理的曲折过程;讲授反证法时,可向学生详细叙述伽利略是如何更正延续了l800余年亚里士多德关于物体下落运动的错误断言旧。总之,通过充分暴露数学史上数学家创新的思维过程,有助于学生对数学思想和基础知识的深入理解。

 

2数学课程教学中融入数学史的措施

 

高等院校数学课程研究的内容比较完善,主要是传授方法的不同。探寻不同的教学形式和教学方法是当前教育工作者的主要任务,使得学生接受起来比较轻松。文献[4]介绍了4种将数学史知识融人数学教学中的具体方法,即故事策略、方法比较策略、追踪历史起源策略、揭示思维过程策略。笔者从以下几个方面提出了改革措施。

 

2.1教学教材的改进从教材方面来看,由于传统的教学和考核制度,全部的教学局限在教材的范围内,基本上不鼓励学生探索教材以外的知识,即使给学生留下思考的空间,甚至提出一些明确的思考题,课后也很少有学生积极主动地予以解决。目前,各种数学教材中很少将数学史知识编写在内,微积分学是由Newton等创立的一门学科,然而在教材中甚至在教学中过于“数学化”,以至于很少提到Newton,绝大多数学生学习微积分后,根本不会应用其解决实际问题。因此,首先应进行教材编写改革,通过严格地专家论证,将必需的数学史知识编写进去(如以附录的形式附在每章后),教学时可供参考。这样学生在学习数学知识的同时也可以便利地了解相关知识,不必到课外寻找数学史知识。

Top