2021-4-10 | 学科教育
教学以传授理论知识为主,虽然也讲培养能力,但主要是解题能力,很少体现自学能力,分析解决实际问题的能力。传统的数学教育普遍存在着脱离实际,重理论,轻应用的倾向。这样的教学内容使学生感到的是数学的枯燥,远离生活实际,同时也使学生的创造性得不到充分发挥,不利于能力的培养。
尽管目前大部分高校都开设了“数学建模”选修课,但仅此一举,对培养学生能力所起的作用是微弱的。一方面,由于“数学建模”所包含的内容非常广泛,对不同问题分析的方法又各不相同,真正掌握难度很大。另一方面,数学建模教育实质上是一种能力和素质的教育,需要较长的过程,单靠开设一门选修课还远远不够。另外,“数学建模”作为一门选修课,学习的人数毕竟是有限的,因此解决这一问题的有效办法是在数学教学中渗透数学建模思想,介绍数学建模的基本方法。
一、数学教学过程中数学建模思想培育
1.数学建模的思想内涵
数学建模是指人们对各类实际问题进行组建数学模型并使用计算机数值求解的过程。数学建模一般要经历下列步骤。(1)调查研究。在建模前,建模者要对实际问题的历史背景和内在机理有深刻的了解,对『廿】题进行全面深入细致的调查研究。(2)抽象简化。建模前必须抓住问题的主要因素,确立和理顺因素之间的关系,提出必要的、合理的假设,将现实问题转化为数学问题。(3)建立模型。这一步是调动数学基础知识的关键,要将问题归结为某种数学结构。(4)用数值计算方法求解模型。这要求建模者熟练地使用Mauab、Mathtype、Spss等软件。(5)模型分析。对所求出的解,进行实际意义和数学理论方面的分析。(6)模型检验。虽然并非所有模型都要进行检验,但在许多问题中,所建立的模型是否真实反映客观实际是需要用已知数据去验证的。(7)模型修改。对不合理部分,如变量类型、变量取舍、已知条件等进行调整,使模型中的各个因素更加合理。(8)模型应用。数学模型及其求解的目的应该是对实际工作进行指导及对未来进行预测和估计。由此可见,数学建模是一个系统的过程,在进行数学建模活动的过程中需要利用各种技巧、技能以及综合分析等认知活动。
2.高校数学教学的现状及其弊端
我国高等院校数学课课程在授课内容上,主要着眼于数学内部的理论结构和它们之间的逻辑关系,存在重经典、轻现代,重分析、轻数值计算,重运算技巧、轻数学方法,重理论、轻应用的倾向。过分强调数学的逻辑性和严密性。在教学方法上,数学教学越来越形式化,注重理论推导,着重训练学生的逻辑思维能力,而忽视理论背景和实际应用的传授,致使学生不知如何从实际问题中提炼出数学问题以及如何使用数学来解决实际问题。数学应用的讲解,也仅仅停留在古典几何和物理上,忽视数学在实际工程问题中的应用,导致学生主动应用数学的意识淡薄,不利于培养学生运用数学知识解决实际问题的能力,不能满足后续专业课的需要。教学过程中以教师课堂讲授为主。多采用注入式。缺乏师生间必要的沟通与互动,不利于学生能力的培养,更不利于创造性思维和创造能力的培养。
二、数学建模思想融入数学教学中的有效途径
由于教材对原始研究背景的省略、教师对原始研究背景的重视不够和课堂有限的学习时间等各种因素,传统数学教育很少对前人的数学探索过程进行再现。然而,这正是数学建模思想的点睛之处。任何一门数学分支学科都是由于人类在探索自然规律过程中的需要而发展起来的,所以,重要概念的提出、公式和定理的推导以及整个分支理论的完善都是前人对现实问题进行数学建模的结果。
那么,如何将前人的建模思想在传授知识的过程中再现给学生呢?经过长期教学实践,笔者认为,可以通过如下两个途径来实现。
一是尽量用原始背景和现实问题,通俗的比喻,直观的演示引入定义、定理和公式,然后再由通俗的描述性语言过渡到严谨的数学语言。这样不仅使学生真正了解到知识的来龙去脉,熟悉了这类问题的本质属性,而且掌握了处理这类问题的数学建模方法,即学会了如何从实际问题中筛选有用的信息和数据,建立数学模型,进而解决问题。同时还让学生认识到数学不是孤立的,它与其他领域紧密地联系着。数学模型所表现的符号美、抽象美、统一美、和谐美与严谨美更让学生浸润在数学美的享受之中。例如,教材中以“户矿、“户Ⅳ”语言给予形式化精确描述的极限概念,由于这种描述高度抽象与概括,造成初学者难以用自己的思想去思考、理解它的含意,只能把它看做是一些干巴巴的数学符号,不加理解地死记它,久而久之就失去了学习的兴趣。如果我们从刘徽的“割圆术”讲起,并利用课件进行动态数值模拟演示。尽可能地向学生展示极限定义的形成过程,挖掘极限定义的实质,然后再利用“P矿、。户Ⅳ”语言给出准确的定义,从而使学生理解“极限”这个概念模型的构建过程。这样既省时又直观,教学效果自然更佳。
二是精选数学应用例题,进行建模示范,启发学生用数学解决实际问题的意识。我们本着减少经典、增加现代、减少技巧、增加应用的原则,弃去了原书中部分经典例子,加入既能反映问题,又能开阔学生眼界的例子。这样教学,很容易牵动学生的数学思维,加深了他们对知识的理解,让他们体验到了应用数学解决实际问题的乐趣,激发了他们用数学的思维和方法积极地探索现实世界。
三、数学建模思想融入数学教学中的一些教学案例
1.数学建模思想融入微积分教学中的教学案例经典微积分学理论是近代科学的伟大创造。它的背景包含了前人数学建模的过程,蕴藏着丰富的创造性思维的轨迹。“无穷小量分析”和“微元分析”是微积分学的主要思想方法,微分和积分的基本概念就是运用这两个思想方法,在解决实际问题中,分析和处理变与不变、直与曲、局部与全局、近似与精确、有限与无限的矛盾中建立和发展起来的。