SCI期刊 | 网站地图 周一至周日 8:00-22:30
你的位置:首页 >  水产养殖论文 » 正文

水产养殖废水处置及再利用

2021-4-9 | 水产养殖论文

作者:李岩 张饮江 马海峰 王聪 董悦 文晓峰 刘晓培 何培民 单位:上海海洋大学水产与生命学院 水域环境生态上海高校工程研究中心

1材料与方法

1.1试验区位本试验基地位于江苏省无锡市胡埭镇直湖港地区养殖塘(图1)。胡埭镇直湖港地区水产养殖面积700hm2,以养殖鱼类和中华绒鳌蟹为主,养殖面积约38.8hm2,鱼塘面积约83%,蟹塘面积约12%。水产养殖业产值占农业总产值的比重呈逐年上升趋势,是农业增效产、农民增收重要途径。以太湖地区污染物排放系数、入河系数为基础,根据污染源调查分析,直湖港地区CODMn(以高锰酸钾作化学氧化剂测定的化学需氧量)、铵态氮、总磷等水产养殖污染物入河量分别为6.0、0.9、0.6t/年。

1.2试验材料沉水植物主要为苦草(Vallisnerianatans)、轮叶黑藻(Hydrillaverticillata)、伊乐藻(Potamogetonmalaianus)。轮叶黑藻株高20~25cm,伊乐藻株高12~15cm,均来自上海海洋大学南汇水产养殖试验基地,苦草为草籽,来自无锡。蟹塘面积为0.67hm2,中华绒鳌蟹(Eriocheirsinensis)投放密度109.5kg/hm2,规格200只/kg。鱼塘面积为0.8hm2,主要为鲫鱼、草鱼、白鲢、花鲢混养(草鱼4180尾/hm2,鲫鱼3880尾/hm2,白鲢2090尾/hm2,花鲢895尾/hm2),饲料为四大家鱼配合饲料,每日投饵量为鱼体重的3%~4%;试验期间,补给水来自降雨,鱼苗塘面积0.13hm2,主要是草鱼与鲫鱼鱼苗。用化肥追肥,每隔3~5d施肥1次,每次用碳铵60~75kg/hm2,钙镁磷肥60~75kg/hm2;试验期间补给水来自降雨。养殖塘水源来自龙延河河道。

1.3试验方法原位生态修复:从2010年1月至2011年1月,首先冬歇期对蟹塘干塘清整,维持底泥约5cm,用生石灰2340~2985kg/hm2,全塘泼洒消毒10d,水温为5℃以上,选择伊乐藻为春季先锋种,轮叶黑藻为夏秋季主要植物。伊乐藻移栽时,按照2m×3m行间距扦插,扦插深度3~5cm,栽种密度为5~7g/L,随着伊乐藻生长,逐步加水,使水深为1.2~1.5m。2月下旬投放中华绒鳌蟹,3月投放苦草籽1kg/0.07hm2,6月开始分阶段移除过量伊乐藻,使苦草、轮叶黑藻主要发挥净化水质的功效。每月中旬10:00在蟹塘定点处的水面下50cm处采集水样2L进行检测,同时观察伊乐藻、苦草与轮叶黑藻生长状态,并及时补种或收割。原位生态修复和异位湿地处理相结合措施:从2010年11月下旬中华绒鳌蟹捕捞后,有序分批地抽取鱼塘与鱼苗塘的养殖废水至蟹塘,进行净化处理,其间鱼塘异位处理20d,然后鱼苗塘异位处理20d。12月17日开始,先用2d时间抽取鱼塘中(50%)的养殖废水(水位降低0.5m、水量减少4002m3)至异位湿地处理场所蟹塘中净化处理,将净化处理后的水排回鱼塘再利用。1月10日开始,用1d时间抽取鱼苗塘(50%)的养殖废水(水量2335m3),排至异位湿地处理场蟹塘中,净化处理后,将水排回至鱼苗塘再利用,削减养殖废水排放。鱼塘与鱼苗塘每批抽水完成后,每隔5d定点采集水样2L,共采样5次。

1.4检测指标及方法主要检测指标为pH值、溶解氧含量、高锰酸盐指数、硝态氮含量、亚硝态氮含量、铵态氮含量、总磷含量、总氮含量。检测方法:高锰酸钾指数,酸性高锰酸钾滴定法;亚态硝氮含量,重氮-偶氮比色法;硝态氮含量,紫外分光光度法;铵态氮含量,纳什试剂比色法;总磷(TP)含量,钼酸铵分光光度法;总氮(TN)含量,碱性过硫酸钾消解紫外分光光度法;活性磷(PO3-4-P),钼锑抗法;叶绿素a含量,单色分光光度法。

2结果与分析

2.1苦草、伊乐藻与轮叶黑藻组合群落对蟹塘的净化效果2010年1月至2011年1月对蟹塘(原位生态修复)、鱼塘、鱼苗塘和龙延河(水源)水质情况开展定时、定点监测(表1),试验区域水质氮、磷与有机物污染较严重。蟹塘水质优于其他相邻养殖塘。

2.1.1蟹塘N、P含量全年变化趋势水体中高浓度的氮、磷是水体富营养化的主要表现,控制水体富营养化的根本措施在于削减水体中氮、磷浓度[6]。试验结果表明,蟹塘TN、TP含量整年都较稳定,且较鱼塘、鱼苗塘和水源低(图2、图3)。这说明苦草、伊乐藻和轮叶黑藻能有效降低蟹塘水体的氮、磷含量,并能使其维持在一定范围内。蟹塘总磷含量全年保持稳定,在0.15mg/L上下波动,特别是6—9月,总磷含量明显低于鱼塘,达到国家地表水Ⅲ类标准(图2)。蟹塘总氮含量明显低于其他塘水质,并且全年变化范围不太大(图3)。蟹塘水体氮、磷含量全年保持稳定,为中华绒鳌蟹生长提供了良好的生境。

2.1.2蟹塘CODMn含量全年变化趋势利用植物削减富营养化水体有机污染也有大量研究[7-8],本研究利用苦草、伊乐藻与轮叶黑藻组合群落削减蟹塘养殖水体中的CODMn取得较好的效果。CODMn反映水体中有机污染程度的综合指标,由图4可知,蟹塘CODMn全年较稳定,平均为10mg/L,低于未种植苦草、伊乐藻和轮叶黑藻的鱼塘、鱼苗塘和水源。说明伊乐藻与轮叶黑藻对水体具有净化功能,能有效削减养殖水体中的有机污染物。

2.1.3蟹塘叶绿素a含量全年变化趋势叶绿素a含量是衡量水体藻类生物量的一个重要指标[9]。沉水植物具有克藻效应,能降低水体叶绿素a含量[10]。试验结果表明,蟹塘叶绿素a含量全年基本稳定,在夏季藻类滋生的高温季节,蟹塘叶绿素a含量平均为15mg/m3,仅约为其他水体含量的1/5(图5),并且透明度在晴好天气高达0.8m。而没有种植沉水植物的鱼塘及鱼苗塘,在相同水源情况下,叶绿素a含量在6—9月之间发生明显变化。说明苦草、伊乐藻和轮叶黑藻对控制蟹塘水体藻类生长发挥了很大作用,明显降低了水体叶绿素a含量,并且提高了水体透明度。

2.2异位湿地生态修复对水质净化效果

2.2.1异位湿地生态修复期间水质变化情况表2和表3为鱼塘和鱼苗塘养殖废水异位生态修复水质净化效果。由图6和图7可知,养殖水排放到蟹塘时各主要水质指标有较大波动,但每批经过异位处理10d后,主要检测指标几乎不再有波动,且浓度持续降低,说明该系统稳定性较高,净化能力较强。鱼塘和鱼苗塘分别经过20d异位修复后,鱼塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至7.55、0.19、0.20、1.16、11.63mg/m3。鱼苗塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至8.93、0.33、0.28、1.64、12.16mg/m3。水质指标低于生态修复前浓度,说明异位湿地生态修复起到较好的水质净化作用。

Top