SCI期刊 | 网站地图 周一至周日 8:00-22:30
你的位置:首页 >  生态修复论文 » 正文

矿山废弃地修复植被的再建

2021-4-9 | 生态修复论文

作者:张鸿龄 孙丽娜 孙铁珩 陈丽芳 单位:沈阳大学 辽宁省地质矿产研究院

垃圾是城市的必然产物。在众多的垃圾处理方法中,卫生填埋法较为简便、经济。随着城市规模的扩大,填埋场进入城区的范围,直接影响城市的美观,尤其是垃圾填埋后腐烂分解产生的填埋气(如甲中国的土地中只有14%是适耕地,而人均耕地只有0.106hm2,远低于世界平均水平的0.236hm2(Lin&Ho,2003)。近十年,随着经济的发展,矿山大规模开采、固体废弃物填埋等占用了大量土地,使得中国的适耕地越来越少,特别是矿山开采活动不但占用和破坏大量土地,而且在矿山开采和开采之后的长时间内还会通过粉尘、潜在的酸性废水排放、地表径流、滑坡、塌陷等过程再次污染及破坏土地,并使周边环境不断恶化(Wong,2003;白中科等,2006)。矿区水土一旦遭受污染破坏,其治理难度大、费用高、环境恢复时间长,甚至还会带来一系列社会问题。因此,矿区生态环境的修复是采矿业可持续发展中必不可少的一项任务。

矿山废弃地是一类特殊的退化生态系统,由于人为的巨大干扰,超出了原有生态系统的修复容限。根据其形成原因及组成,矿山废弃地可以分为四大类,其中修复难度较大的包括精矿筛选后剩余岩石碎块和低品味矿石堆积而成的废石堆、剥离物压占的陡坡排岩场/排土场、尾矿砂形成的尾矿库以及矸石堆积的矸石山(胡振琪等,2003;Li,2006)。从20世纪70年代开始矿山复垦工作以来,国内外开展了大量的修复研究与实践工作,针对不同种类废弃地的不同退化机制和性质,采取的修复及重建措施也不相同(Marrs&Bradshaw,1982;Lietal.,2000;胡振琪等,2003;白中科等,2006)。本文在总结这些研究的基础上,着重对矿山废弃地生态修复中的基质改良和植被重建技术进行了分析,以期为今后矿山废弃地的生态修复提供参考。

1生态恢复与生态重建内涵

当生态系统在外界因素的干扰下,其结构和功能发生位移,原有的平衡被打破,系统的结构和功能发生变化而形成破坏性波动或恶性循环后,该生态系统则成为一类退化生态系统或受损生态系统。对于那些破坏强度大,系统自然功能基本丧失的退化生态系统来说,需要在人为干预或辅助下使其结构和功能逐渐恢复完善而达到一种新的平衡。对于退化生态系统的这种人工干预就称之为生态修复(ec-ologicalremediation)、生态恢复(ecologicalrestora-tion)或生态重建(ecologicalreconstruction)。最早的生态恢复工作始于1935年,在Leppold指导下,在美国Madison一块废弃地及威斯康星河沙滩海岸附近的另一块废弃地上开展了恢复工作,经过多年努力后成功创造了今天的威斯康星大学种植园景观和生态中心,这使得人们认识到,把过度放牧、侵蚀等致损因素造成的废弃地恢复到草原、森林在理论上和技术上都是可能的(米文宝和谢应忠,2006)。进入20世纪70年代后,对于退化生态系统的生态恢复研究逐渐发展起来,1973年3月,在美国弗吉尼亚理工大学召开了题为“受害生态系统的恢复”国际会议,第一次专门讨论了受害生态系统的恢复和重建等重要的生态学问题(Jordanetal.,1987)。1980年在Cairns主编的《受损生态系统的恢复过程》一书中将生态恢复定义为:恢复被损害生态系统到接近于它受干扰前的自然状态的管理与操作过程,即重建与该系统干扰前的结构与功能有关的物理、化学和生物特征。然而这一概念过分强调了恢复(restoration),而对重建(reconstruction)一个新的生态系统未给予足够重视(米文宝和谢应忠,2006)。

实际上,要想将一个受损的生态系统恢复到原来未受干扰前的状态是不可能的。Bradshaw(2000)在回顾美国“生态恢复”(ecologicalreclamation)的历史时指出,生态系统的重要性是要强调生物多样性、永久性、自我持续性和植被演替性。对于退化生态系统的恢复应该是在人为干预或辅助下通过修复、改建、重建、复垦和再植等各种措施促使退化生态系统结构和功能不断完善,最终达到另一个生态平衡状态。1995年,美国生态恢复学会提出,恢复是一个概括性的术语,包含了改建(rehabilitation)、重建(reconstruction)、改造(reclamation)、再植(reve-getation)等含义。生态重建(reconstruction)并不意味着在所有场合下恢复原有的生态系统,生态恢复的关键是恢复生态系统必要的结构和功能,并使系统能够自我维持和平衡(李永庚和蒋高明,2004)。因此,生态系统的恢复不仅仅是简单地恢复几种植物或将裸地覆盖,它还至少应包括以下三方面:1)土壤养分积累与生物地球化学循环,包括对养分的滞留与损失、土壤的化学过程、有机物质的合成与降解等(Schaaf,2001);2)生物多样性的恢复,包括生物种类与功能是否达到开矿前或邻近自然景观的水平;3)植被演替方向与生态系统的自我维持能力(Bell,2001)。因此,生态恢复与重建不再是一个静态的概念,它是随着人们对退化生态系统研究的深入而不断完善和发展的。现代生态恢复与重建不仅包括退化生态系统结构、功能和生态学潜力的恢复与提高,而且包括人们依据生态学原理,使退化生态系统的物质、能量和信息流发生改变,形成更为优化的自然-经济-社会复合生态系统(米文宝和谢应忠,2006)。随着研究及认识的不断深入,生态恢复、生态重建的内涵将不断得到扩展和完善,其所包含的内容也将更深广。

2矿山废弃地生态环境退化特征

矿山废弃地是一类特殊的退化生态系统,在矿山开采时,矿山废弃地原有的生态系统遭到破坏,主要的生态问题表现为:表土层破坏,土壤基质物理结构不良、水分缺乏,持水保肥能力差,导致缺乏植物能够自然生根和伸展的介质;极端贫瘠,氮、磷、钾及有机质等营养物质不足或是养分不平衡;存在限制植物生长的物质,如重金属等有毒有害物质含量过高,影响植物各种代谢途径;极端pH值或盐碱化等生境条件,影响植物的定居;生物数量和生物种类的减少或丧失,给矿区废弃地恢复带来了更加不利的影响(Leisman,1957;Cornwell&Jackson,1968;Li,2006)。针对矿山废弃地以上退化特征及其极端的立地条件,开展生态修复与重建的首要问题是进行矿区废弃地的基质改良。

3矿山废弃地基质改良技术

3.1表土覆盖技术

地表物质是植物生长的介质,植物生长立地条件的好坏,在很大程度上取决于地表性质。一般认为,回填表土是一种常用且最为有效的措施。表土是当地物种的重要种子库,它为植被恢复提供了重要种源。同时也保证了根区土壤的高质量,包括良好的土壤结构,较高的养分与水分含量等,还包含有较多的微生物与微小动物群落(Bell,2001)。卞正富和张国良(1999)以开滦矿区为实验点,进行了研究,结果表明,通过条带式覆土或全面覆土对矸石酸性的控制好于穴植覆土。Barth(1998)认为,覆土越厚越好,这样可以避免根系穿透薄薄的表土层而扎进有毒的矿土中。但是,覆土越厚,工作量越大,费用越高,而且在超过覆土厚度一定范围后,修复效果增长反而不显著。Holmes和Richardson(1999)研究表明,覆盖10cm厚的表土能使植物的盖度从20%上升到75%,覆盖30cm土层,植物盖度上升到90%,但这两种深度的表土对提高植物密度方面没有明显差异,甚至在播种18个月后,浅表土(10cm)上的植物密度要高于深表土(30cm)。Redente等(1997)在一个煤矿地比较了4个厚度(15、30、45、60cm)的表土后,发现覆盖15cm即可以取得较好的恢复效果。因此,表土的覆盖可以选择10~15cm厚度,而且应该依据种植的植物类型进行调整。回填表土所产生的改土和修复效果比较显著,但回填表土也存在较大的局限性,主要因为此项工程涉及到表土的采集、存放、二次倒土等大量工程,所需费用很高、管理不便,而且我国大部分矿区在山区,土源较少,多年采矿后取土也越来越困难,不少矿区已无土可取,一些矿山企业甚至花费巨资进行异地熟土覆盖(彭建等,2005)。这种做法既解决不了矿山长期使用土源问题,又破坏我国宝贵的耕地资源。因此,回填表土和异地熟土覆盖的基质改良方法只能在条件允许的矿区适用,在土源短缺的矿区,应该选择其他行之有效的基质改良措施。

Top