SCI期刊 | 网站地图 周一至周日 8:00-22:30
你的位置:首页 >  债务结构论文 » 正文

政治联系对债务期限结构的作用

2021-4-9 | 债务结构论文

 

0引言

 

我国正处于经济转型即将完成发展阶段,宏观的制度、市场和经济背景显著影响债务期限结构。本文的研究视角是从公司的政治联系紧密程度出发,探究政治联系程度是否能对公司的债务期限结构决策产生显著影响。本文目的在于:一方面,考察地方政府和辖区内的公司建立更强的政治联系的动机,另一方面研究这种政治联系对公司债务期限结构的影响。通过本文对2002~2009年非金融类上市公司的6146个观察值的研究,我们发现:①其他条件不变时,当地上市公司的数量越少,长期借款比例越高;②其他条件不变,经济影响力越大,长期借款比例越高。

 

1文献回顾和本文假设

 

政治联系作为一种声誉和保护机制,是一种有价值的资源,对公司的经济活动有重要影响(Fishman,2001;孙铮等,2005)。一方面,对公司而言,一定程度上它的发展需要借助于当地政府的产业政策导向和法治环境,与政府官员(特别是高级官员)的联系程度紧密就可提高公司形象和声誉(卫武,2006),尤其在缺乏第三方有效监督机制时,这种政治联系向外界传递了一种良好信号,使企业得到隐性的支持和保护,或者逃避政府的严厉监管以降低契约执行成本(Faccio,2004;罗党论和唐清泉,2009),因而公司主动倾向于和当地政府建立紧密的政治联系更多地是一种积极应对措施(余明桂和潘红波,2008;潘红波等,2008)。

 

另一方面,在中国现行政治体制下,对于地方政府考核的一个通用标准是GDP、财政收入等硬性指标(BlanchardandShleifer,2001)。此时当地公司的规模、数量和增长在很大程度上决定了地方政府的业绩如何,当然也决定了地方官员的升迁概率和政治生涯的结束概率(LiandZhou,2005)。在这种逻辑推理下,地方政府有强烈的动机与当地公司建立紧密的政治联系,在其他情况相同的情况下,当地辖区内的公司越少,地方政府与企业之间的政治联系越紧密;当然公司对当地的经济指标贡献越大,那么它与地方政府的政治联系就越紧密。那么这种紧密的政治联系是通过何种途径来影响公司的债务期限结构的呢?一般而言,与地方政府的政治联系越紧密,那么公司更容易获得所在地区银行系统的支持。政治联系紧密的公司更能较少的抵押获得长期贷款,一般具有更高的资产负债率(Faccio,2006;Claessenetal,2008)。由于地区经济发展状况和法治环境的差异化,政治联系的紧密程度对于公司债务融资的影响也不尽相同,在金融生态较为恶化和法治水平低的地区,政治联系的效应越显著,公司无法在市场机制下获得充足的资本来源,因而不得不更多地依赖于政治联系来获得银行贷款(余明桂和潘红波,2008)。

 

此外,当地方政府能对银行实施重大影响或者控制时,政治联系就在某种程度上决定公司的债务期限结构。Sapienza(2004)通过意大利国有银行的研究,结果显示:①与私有银行相比,国有银行,向相似或相同的公司收取的利率较低,即使在私有银行能向公司贷出更多款项时也如此;②国有银行的贷款行为是由银行会员政党的选举结果决定的;③公司所在地区的政党力量越强,那么公司的借款利率就越低。RajanandZingales(2003)通过对国际多个国家的研究证据表明:政治影响在国有银行中比国有公司中更强烈。基于上述分析,提出了本文的基本假设:H1:其他条件不变时,当地上市公司数量越少,长期贷款比例越高。H2:其他条件不变时,上市公司的经济影响力越大,长期贷款比例越高。

 

2实证检验

 

2.1样本选择

 

本文选取从2002~2009年所有非金融类A股上市公司,并按以下原则剔除:a.上海、北京、天津、重庆和深圳;b.研究期间公司注册地址变更的;c.最终控制人为中央政府的,即央企。按照均值±3个标准差替代来处理异常值,最终研究样本为6146个,其中2002年487个,2003年626个,2004年740个,2005年816个,2006年827个,2007年834个,2008年904个,2009年912个。

 

2.2模型与变量设计

 

依据相关文献,公司债务期限结构主要的影响因素有内部和外部两类。内部因素主要为公司自身经济特征,如资产负债率、规模、清算比率、盈利水平、在建工程、成长性与行业特征(郭鹏飞、孙培源,2003;孙铮等,2005)。具体到外部影响因素,本文研究目的是探求上市公司与当地政府政治联系紧密程度对债务期限结构的影响,我们采用当地政府辖区内上市公司数量及其经济影响力作为替代变量。根据前面的讨论,我们考虑最终控制人、高管的政府背景以及地区市场化程度的影响。最终控制人分为三类,第一类是省级政府,第二类是地方政府(包括集体企业),第三类是民营企业(包括外资企业)。高管的政府背景则定义为董事长或总经理是否现在或曾经担任政府官员(包括全国或地方的人大代表和政协委员)(Fanetal.,2007)。变量设计参见表1。

 

2.3描述性统计

 

本文设计变量的描述性统计结果见表2。其中,长期借款比例(LongTerm)的均值(中位数)为32.18%(13.49%),表明我国上市公司的债务资本主要来自短期借款,并不是来自长期借款,当然不排除循环使用短期借款来替代长期借款的可能。在计量政治联系紧密程度时,当地上市公司数量(Num-ber)的均值(中位数)为10.4542(9),其中1~4家,4~9家,9~16家,16~31家的观察值各占据25%,说明当地上市公司数量存在较大跨度,那么以四分位数为标准,将分为四类:1~4家为1,4~9家为2,9~16家为3,16~31家为4),这是比较恰当的。经济影响力(Ecoeffectit)的均值(中位数)为5.46%(1.81%),处理方法与类似,也是分为四类:0~0.62%,0.62%~1.75%,1.75%~4.97%,4.97%~72.74%。以下是本文的回归检验方程:LongTerm=α+β1Number+β2EconEffectit+β3MIndexit+β4Sizeit+β5Levit+β6ROEit+β7Liquidit+β8Constructit+β9MBRit+β10Industry+ε

 

2.4相关性分析

Top